精英家教网 > 高中数学 > 题目详情
5.在△ABC中,已知a=1,c=$\sqrt{3}$,B=$\frac{5π}{6}$,则b等于(  )
A.$\sqrt{7}$B.2$\sqrt{7}$C.3$\sqrt{7}$D.7

分析 直接利用余弦定理即可计算得解.

解答 解:∵a=1,c=$\sqrt{3}$,B=$\frac{5π}{6}$,
∴由余弦定理可得:b2=a2+c2-2accosB=1+3-2×$1×\sqrt{3}×(-\frac{\sqrt{3}}{2})$=7,
∴b=$\sqrt{7}$.
故选:A.

点评 本题主要考查了余弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在区间[-3,3]中任取一个数m,则$\frac{x^2}{m+3}$+$\frac{y^2}{{{m^2}+1}}$=1表示焦点在x轴上的椭圆的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=cosx-2x-2-x-b(b∈R).
①当b=0时,函数f(x)的零点个数0;
②若函数f(x)有两个不同的零点,则b的取值范围(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出下面六个命题,不正确的是:②③④
①若向量$\overrightarrow a$、$\overrightarrow b$满足|$\overrightarrow a$|=2|$\overrightarrow b$|=4,且$\overrightarrow a$与$\overrightarrow b$的夹角为120°,则$\overrightarrow b$在$\overrightarrow a$上的投影等于-1;
②若B=60°,a=10,b=7,则该三角形有且只有两解
③常数列既是等差数列,又是等比数列;
④若向量$\overrightarrow a$与$\overrightarrow b$共线,则存在唯一实数λ,使得$\overrightarrow a$=λ$\overrightarrow b$成立;
⑤在正项等比数列{an}中,若a5a6=9,则log3a1+log3a2+…+log3a10=10;
⑥若△ABC为锐角三角形,且三边长分别为2,3,x.则x的取值范围是$\sqrt{5}$<x<$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.集合A={3,2},B={1,b},若A∩B={2},则A∪B=(  )
A.{1,2,3}B.{0,1,3}C.{0,1,2,3}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知三棱锥A-BCD的四个顶点A、B、C、D都在球O的表面上,AC⊥平面BCD,BC⊥CD,且AC=$\sqrt{3}$,BC=2,CD=$\sqrt{5}$,则球O的表面积为(  )
A.12πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若O、A、B、C为空间四点,且向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$不能构成空间的一个基底,则(  )
A.$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$共线B.$\overrightarrow{OA}$,$\overrightarrow{OB}$共线C.$\overrightarrow{OB}$,$\overrightarrow{OC}$共线D.O,A,B,C四点共面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|1≤x<5},B={x|x2-2x-15≤0},C={x|-a<x≤a+3}.
(I)求A∩B;
(Ⅱ)若C∩A=C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为(  )
A.$\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{48}$=1B.$\frac{{x}^{2}}{48}$+$\frac{{x}^{2}}{64}$=1C.$\frac{{x}^{2}}{48}$-$\frac{{y}^{2}}{64}$=1D.$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1

查看答案和解析>>

同步练习册答案