| A. | $\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{48}$=1 | B. | $\frac{{x}^{2}}{48}$+$\frac{{x}^{2}}{64}$=1 | C. | $\frac{{x}^{2}}{48}$-$\frac{{y}^{2}}{64}$=1 | D. | $\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1 |
分析 根据两圆外切和内切的判定,圆心距与两圆半径和差的关系,设出动圆半径为r,消去r,根据圆锥曲线的定义,即可求得动圆圆心M的轨迹,进而可求其方程.
解答 解:设动圆圆心M(x,y),半径为r,
∵圆M与圆C1:(x-4)2+y2=169内切,与圆C2:(x+4)2+y2=9外切,
∴|MC1|=13-r,|MC2|=r+3,
∴|MC1|+|MC2|=16>8,
由椭圆的定义,M的轨迹为以C1,C2为焦点的椭圆,
可得a=8,c=4;则
b2=a2-c2=48;
∴动圆圆心M的轨迹方程:$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1.
故选:D.
点评 考查两圆的位置关系及判定方法和椭圆的定义和标准方程,要注意椭圆方程中三个参数的关系:b2=a2-c2,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{7}$ | B. | 2$\sqrt{7}$ | C. | 3$\sqrt{7}$ | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,3} | B. | {2,4} | C. | {1,4} | D. | {2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow a$+$\overrightarrow b$ | B. | $\overrightarrow a$-2$\overrightarrow b$ | C. | $\overrightarrow a$-$\overrightarrow b$ | D. | -$\overrightarrow a$+$\overrightarrow b$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com