【题目】新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为
、
、
、
、
五个等级.某试点高中2018年参加“选择考”总人数是2016年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2016年和2018年“选择考”成绩等级结果,得到如下图表:
![]()
针对该校“选择考”情况,2018年与2016年比较,下列说法正确的是( )
A. 获得A等级的人数减少了B. 获得B等级的人数增加了1.5倍
C. 获得D等级的人数减少了一半D. 获得E等级的人数相同
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线
上的动点
到点
的距离与到直线
的距离相等.
(1)求曲线
的轨迹方程;
(2)过点
分别作射线
、
交曲线
于不同的两点
、
,且
.试探究直线
是否过定点?如果是,请求出该定点;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔.唐三彩的生产至今已有
多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史.某陶瓷厂在生产过程中,对仿制的
件工艺品测得重量(单位:
)数据如下表:
分组 | 频数 | 频率 |
|
|
|
|
| |
|
| |
|
|
|
|
| |
|
| |
合计 |
|
(1)求出频率分布表中实数
,
的值;
(2)若从仿制的
件工艺品重量范围在
的工艺品中随机抽选
件,求被抽选
件工艺品重量均在范围
中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列叙述正确的是( )
A.命题“p且q”为真,则
恰有一个为真命题
B.命题“已知
,则“
”是“
”的充分不必要条件”
C.命题
都有
,则
,使得![]()
D.如果函数
在区间
上是连续不断的一条曲线,并且有
,那么函数
在区间
内有零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】武汉有“九省通衢”之称,也称为“江城”,是国家历史文化名城.其中著名的景点有黄鹤楼、户部巷、东湖风景区等等.
(1)为了解“五·一”劳动节当日江城某旅游景点游客年龄的分布情况,从年龄在22岁到52岁的游客中随机抽取了1000人,制成了如图的频率分布直方图:
![]()
现从年龄在
内的游客中,采用分层抽样的方法抽取10人,再从抽取的10人中随机抽取4人,记4人中年龄在
内的人数为
,求
;
(2)为了给游客提供更舒适的旅游体验,该旅游景点游船中心计划在2020年劳动节当日投入至少1艘至多3艘
型游船供游客乘坐观光.由2010到2019这10年间的数据资料显示每年劳动节当日客流量
(单位:万人)都大于1.将每年劳动节当日客流量数据分成3个区间整理得表:
劳动节当日客流量 |
|
|
|
频数(年) | 2 | 4 | 4 |
以这10年的数据资料记录的3个区间客流量的频率作为每年客流量在该区间段发生的概率,且每年劳动节当日客流量相互独立.
该游船中心希望投入的
型游船尽可能被充分利用,但每年劳动节当日
型游船最多使用量(单位:艘)要受当日客流量
(单位:万人)的影响,其关联关系如下表:
劳动节当日客流量 |
|
|
|
| 1 | 2 | 3 |
若某艘
型游船在劳动节当日被投入且被使用,则游船中心当日可获得利润3万元;若某艘
型游船劳动节当日被投入却不被使用,则游船中心当日亏损0.5万元.记
(单位:万元)表示该游船中心在劳动节当日获得的总利润,
的数学期望越大游船中心在劳动节当日获得的总利润越大,问该游船中心在2020年劳动节当日应投入多少艘
型游船才能使其当日获得的总利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】焦点在
轴上的椭圆
经过点
,椭圆
的离心率为
.
,
是椭圆的左、右焦点,
为椭圆上任意点.
(1)若
面积为
,求
的值;
(2)若点
为
的中点(
为坐标原点),过
且平行于
的直线
交椭圆
于
两点,是否存在实数
,使得
;若存在,请求出
的值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com