精英家教网 > 高中数学 > 题目详情
5.f(x)是R上的偶函数,当x≥0时,f(x)=x3+ln(x+1),则当x<0时,f(x)=(  )
A.-x3-ln(x-1)B.x3+ln(x-1)C.x3-ln(1-x)D.-x3+ln(1-x)

分析 利用函数的奇偶性与已知条件转化求解即可.

解答 解:f(x)是R上的偶函数,可得f(-x)=f(x);
当x≥0时,f(x)=x3+ln(x+1),
则当x<0时,f(x)=f(-x)=-x3+ln(1-x).
故选:D.

点评 本题考查函数的奇偶性的应用,函数的解析式的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.如图所示,在平行四边形ABCD中,M,N分别为DC,BC的中点,已知$\overrightarrow{AN}=\overrightarrow b,\overrightarrow{AM}=\overrightarrow c,\overrightarrow{AD}用\overrightarrow c,\overrightarrow b$表示为$\overrightarrow{AD}$=$\frac{4}{3}\overrightarrow{c}-\frac{2}{3}\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知|$\overrightarrow a$|=2,|$\overrightarrow b$|=3,$\overrightarrow a$与$\overrightarrow b$的夹角为60o,$\overrightarrow c$=5$\overrightarrow a$+3$\overrightarrow b$,$\overrightarrow d$=3$\overrightarrow a$+k$\overrightarrow b$,$\overrightarrow c$⊥$\overrightarrow d$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设数列{an}满足an=$\left\{\begin{array}{l}1,(n=1)\\ 1+\frac{1}{{{a_{n-1}}}},(n>1)\end{array}$,则a5=(  )
A.$\frac{8}{5}$B.$\frac{5}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)在R上为奇函数,且x>0时,f(x)=x2-x,则当x<0时,f(x)=-x2-x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,已知圆M:x2+y2-12x-14y+60=0.设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|x2+2x=0},B={x|x2+2(a-1)x+a2-1=0}.
(1)若A∩B≠∅,求实数a的值;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知O为坐标原点,向量$\overrightarrow{OA}$=$\overrightarrow a$,$\overrightarrow{OB}$=$\overrightarrow b$,$\overrightarrow{OC}$=$\overrightarrow c$且点A、B、C在曲线x2+y2=1上运动,若$\overrightarrow a$⊥$\overrightarrow b$,则($\overrightarrow a$-$\overrightarrow c$)•($\overrightarrow b$-$\overrightarrow c$)的最小值为(  )
A.-1B.-2C.1-$\sqrt{2}$D.$\sqrt{2}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数g(x)=f(x)+2x,x∈R为奇函数.
(1)判断函数f(x)的奇偶性;
(2)若x>0时,f(x)=log3x,求函数g(x)的解析式.

查看答案和解析>>

同步练习册答案