精英家教网 > 高中数学 > 题目详情
10.在平面直角坐标系xOy中,已知圆M:x2+y2-12x-14y+60=0.设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程.

分析 设N(6,n),则圆N为:(x-6)2+(y-n)2=n2,n>0,从而得到|7-n|=|n|+5,由此能求出圆N的标准方程.

解答 解:∵N在直线x=6上,∴设N(6,n),
∵圆N与x轴相切,∴圆N为:(x-6)2+(y-n)2=n2,n>0,
又圆N与圆M外切,圆M:x2+y2-12x-14y+60=0,即圆M:((x-6)2+(x-7)2=25,
∴|7-n|=|n|+5,解得n=1,
∴圆N的标准方程为(x-6)2+(y-1)2=1.

点评 本题考查圆的标准方程的求法,考查直线与圆、圆与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.函数f(x)=2sinπx-$\frac{1}{x}$在x∈[-4,4]的所有零点之和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将正整数2,3,4,5,6随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是(  )
A.$\frac{1}{30}$B.$\frac{1}{20}$C.$\frac{2}{15}$D.$\frac{1}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x||x|<2,x∈Z},B={-1,0,1,2,3},则A∩B=(  )
A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.f(x)是R上的偶函数,当x≥0时,f(x)=x3+ln(x+1),则当x<0时,f(x)=(  )
A.-x3-ln(x-1)B.x3+ln(x-1)C.x3-ln(1-x)D.-x3+ln(1-x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}x+2,x≥2\\{x^2},0≤x<2\end{array}$,则f(f(${\frac{3}{2}}$))=(  )
A.$\frac{9}{4}$B.$\frac{7}{2}$C.$\frac{17}{4}$D.$\frac{81}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{2^{-x}}+1,x≤0\\ m-{x^2},x>0\end{array}$,给出下列两个命题:
命题p:若m=9,则f(f(-1))=0.
命题q:?m∈(-∞,0),方程f(x)=m有解.
(1)判断命题p、命题q的真假,并说明理由;
(2)判断命题¬p、p∧q、p∨q、p∧(¬q)的真假.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将分针拨快20分钟,则分针转过的弧度数为(  )
A.-$\frac{2π}{3}$B.$\frac{2π}{3}$C.-$\frac{π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.以下四个命题中,正确命题是(  )
A.不共面的四点中,其中任意三点不共线
B.若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E共面
C.若直线a,b共面,直线a,c共面,则直线b,c共面
D.依次首尾相接的四条线段必共面

查看答案和解析>>

同步练习册答案