精英家教网 > 高中数学 > 题目详情
设P点是曲线y=x3-
3
x+
2
3
上的任意一点,P点处切线倾斜角为α,则角α的取值范围是(  )
A、[0,
π
2
)∪[
2
3
π,π)
B、[0,
π
2
)∪[
5
6
π,π)
C、[
2
3
π,π)
D、(
π
2
5
6
π)
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的综合应用
分析:求出曲线解析式的导函数,根据完全平方式大于等于0求出导函数的最小值,由曲线在P点切线的斜率为导函数的值,且直线的斜率等于其倾斜角的正切值,从而得到tanα的范围,由α的范围,根据正切函数的值域得到自变量α的范围.
解答: 解:∵y′=3x2-
3
≥-
3
,∴tanα≥-
3

又∵0≤α≤π,
∴0≤α<
π
2
3
≤α<π.
则角α的取值范围是[0,
π
2
)∪[
3
,π).
故选A.
点评:考查学生会利用导数求曲线上过某点切线方程的斜率,会利用切线的斜率与倾斜角之间的关系k=tanα进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某企业生产的某种产品经市场调查得到如下信息,在不做广告宣传时月销售量为1000件;若做广告宣传,月销售量S件与广告费n千元(n∈N*)的关系可用右边流程图来表示:
(Ⅰ)根据流程图,试写出广告费n分别等于1千元和2千元时所对应的月销售量S的值;
(Ⅱ)试写出月销售量S与广告费n千元的函数关系式;
(Ⅲ)若销售一件产品获利10元,该企业做几千元广告时,才能月获利最多,最多是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和为Sn,且an+Sn=-2n-1.
(Ⅰ)证明:数列{an+2}是等比数列;
(Ⅱ)若{bn}满足bn+1=bn+nan,b1=1,求bn

查看答案和解析>>

科目:高中数学 来源: 题型:

(
x
-
1
x
)7
展开式中,不含x2的项的系数和是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足约束条件
x≥0
y≥0
x+y≤1
,则z=
1
2
x+y
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=cos(2x+
π
6
)
+sin2x.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)设A,B,C为△ABC的三个内角,若AB=1,sinB=
1
3
,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

若随机向一个边长为2的正三角形内丢一粒豆子,则豆子落在此三角形内切圆内的概率为(  )
A、
3
π
3
B、
π
9
C、
3
π
9
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=
3
x-12,则其倾斜角为(  )
A、
π
6
B、
π
3
C、
3
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列各式的值.
(1)sin72°cos18°+cos72°sin18°;
(2)cos72°cos12°+sin72°sin12°;
(3)
tan12°+tan33°
1-tan12°tan33°

(4)cos74°sin14°-sin74°cos14°;
(5)sin34°sin26°-cos34°cos26°;
(6)sin20°cos110°+cos160°sin70°.

查看答案和解析>>

同步练习册答案