精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为e=
2
2
,左、右焦点分别为F1、F2,点P的坐标为(2,
3
),且F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如果圆E:(x-
1
2
2+y2=r2上的所有点都不在椭圆C的外部,求圆E的半径r的最大值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)由已知条件得
c
a
=
2
2
,(2c)2=(
3
2+(2-c)2,由此能求出椭圆C的方程.
(Ⅱ)设P(x0,y0)是椭圆C上任意一点,则
x02
2
+y02=1
,|PE|=
(x0-
1
2
)2+y02
,由此利用两点间距离公式能求出半径r的最大值.
解答: 解:(Ⅰ)椭圆C的离心率e=
2
2
,得:
c
a
=
2
2
,…(1分)
其中c=
a2-b2
,椭圆C的左、右焦点分别为F1(-c,0),F2(c,0),
又点F1在线段PF1的中垂线上,
∴|F1F2|=|PF2|,∴(2c)2=(
3
2+(2-c)2,…(3分)
解得c=1,a2=2,b2=1,
∴椭圆C的方程为
x2
2
+y2=1
. …(6分)
(Ⅱ)设P(x0,y0)是椭圆C上任意一点,
x02
2
+y02=1
,|PE|=
(x0-
1
2
)2+y02

y02=1-
x02
2
,…(8分)
∴|PE|=
(x0-
1
2
)2+1-
x02
2
=
1
2
x02-x0+
5
4
,(-
2
x0
2
).
当x0=1时,|PE|min=
1
2
-1+
5
4
=
3
2

∴半径r的最大值为
3
2
.…(12分)
点评:本题考查椭圆方程的求法,考查半径的最大值的求法,解题时要认真审题,注意两点间距离公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|x2<4},B={x|-3≤x≤1},全集U=R.
(1)求集合A∩B;(∁UA)∩B;
(2)若集合B为函数f(x)=2x的定义域,求函数f(x)=2x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:“若a≥0,则x2+x-a=0有实根”.
(Ⅰ)试写出命题p的逆否命题;
(Ⅱ)判断命题p的逆否命题的真假,并写出判断过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD为一直角梯形,侧面PAD是等边三角形,其中BA⊥AD,CD⊥AD,CD=2AD=2AB=2,平面PAD⊥底面ABCD,E是PC的中点.
(1)求证:BE∥平面PAD;
(2)求证:BE⊥CD;
(3)求三棱锥P-ACD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
,其中a为实常数,试讨论f(x)的单调性,并用函数的单调性证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个正四棱台的上、下底面边长分别为4cm和10cm,高为4cm,求正四棱台的侧面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈R,|x|<1时,有如下表达式:1+x+x2+…+xn+…=
1
1-x
,两边同时积分得:
1
2
0
ldx+
1
2
0
xdx+
1
2
0
x2dx+…+
1
2
0
xndx+…=
1
2
0
1
1-x
dx,从而得到如下等式:1×
1
2
+
1
2
×
1
2
2+
1
3
×(
1
2
3+…+
1
n+1
×(
1
2
n+1+…=ln2,请根据以上材料所蕴含的数学思想方法,计算:C
 
0
n
×
1
2
+
1
2
C
 
1
n
×(
1
2
2+
1
3
C
2
n
×(
1
2
3+…+
1
n+1
C
n
n
×(
1
2
n+1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是菱形,PA=PD,∠BAD=60°,E是AD的中点,点Q在侧棱PC上.
(1)求证:AD⊥平面PBE
(2)若VP-BCDE=2VQ-ABCD,试求
CP
CQ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=4,公比q≠1的等比数列,Sn是其前n项和,且4a1,a5,-2a3成等差数列.
(1)求公比q的值;
(2)求Tn=a2+a4+…+a2n的值.

查看答案和解析>>

同步练习册答案