精英家教网 > 高中数学 > 题目详情
设命题p:“若a≥0,则x2+x-a=0有实根”.
(Ⅰ)试写出命题p的逆否命题;
(Ⅱ)判断命题p的逆否命题的真假,并写出判断过程.
考点:四种命题的真假关系,四种命题
专题:简易逻辑
分析:(I)根据逆否命题的定义写出其逆否命题;
(II)利用一元二次方程无根的条件判断逆否命题的真假.
解答: 解:(I)命题的逆否命题是:若x2+x-a=0无实根,则a<0;
(II)∵x2+x-a=0无实根
∴△=1+4a<0,
∴a<-
1
4
<0,
∴命题p的逆否命题是真命题.
点评:本题考查了逆否命题的定义及命题的真假判定,熟练掌握四种命题的定义是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将函数y=sin3x的图象作下列平移可得y=sin(3x+
π
6
)的图象(  )
A、向右平移 
π
6
个单位
B、向左平移
π
6
个单位
C、向右平移
π
18
个单位
D、向左平移
π
18
个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin4x+2
3
sinx•cosx-cos4x.
(Ⅰ)求函数f(x)的最小正周期及单调递减区间;
(Ⅱ)记△ABC的内角A、B、C的对边分别为a、b、c,且f(A)=2,求
b+c
2a
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒子中装有分别标有数字1、2、3、4的4个大小、形状完全相同的小球,现从中有放回地随机抽取2个小球,抽取的球的编号分别记为x1、x2,记ξ=|x1-1|+|x2-2|.
(Ⅰ)求ξ取最大值的概率;
(Ⅱ)求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x3+x2,x<1
alnx,x≥1
,其中a为实常数,且a≠0.
(Ⅰ)若a≤-1,证明:当x≥1时,f(x)≥(a+2)x-x2
(Ⅱ)设0为坐标原点,若在函数y=f(x)的图象上总存在不同两点A,B,使OA⊥OB,且线段AB的中点在y轴上,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若sin(π+α)=
4
5
,且α是第四象限角,求cos(α-2π)的值.
(2)求
tan(-150°)•cos(-570°)•cos(-1140°)
tan(-210°)•sin(-690°)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}前n项和Sn,且Sn=
5
2
n2-
3
2
n(n∈N*),bn=
1
5
(an+4).
(1)求数列{an}通项公式,并证明{an}是等差数列
(2)证明不等式
5amn
-
aman
>1对任意m、n∈N*都成立
(3)若数列dn=3bn+(-1)n-1•λ•2bn(n∈N*),问是否存在非零整数λ,使得对于任意正整数n,都有dn+1>dn?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为e=
2
2
,左、右焦点分别为F1、F2,点P的坐标为(2,
3
),且F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如果圆E:(x-
1
2
2+y2=r2上的所有点都不在椭圆C的外部,求圆E的半径r的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,
(1)写出数列的前5项;
(2)数列{an}是等差数列吗?说明理由.
(3)写出{an}的通项公式.

查看答案和解析>>

同步练习册答案