精英家教网 > 高中数学 > 题目详情
一个盒子中装有分别标有数字1、2、3、4的4个大小、形状完全相同的小球,现从中有放回地随机抽取2个小球,抽取的球的编号分别记为x1、x2,记ξ=|x1-1|+|x2-2|.
(Ⅰ)求ξ取最大值的概率;
(Ⅱ)求ξ的分布列及数学期望.
考点:离散型随机变量的期望与方差,等可能事件的概率,离散型随机变量及其分布列
专题:概率与统计
分析:(Ⅰ)当x1=x2=4时,ξ═|4-1|+|4-2|=5最大,由此能求出ξ取最大值的概率.
(Ⅱ)ξ=0,1,2,3,4,5,分别求出相应在的概率,由此能求出ξ的分布列及数学期望.
解答: 解:(Ⅰ)当x1=x2=4时,ξ═|4-1|+|4-2|=5最大,
ξ取最大值的概率为:
P(ξ=5)=
1
16

(Ⅱ)ξ=0=|1-1|+|2-2|,
ξ=1=|1-1|+|1-2|=|1-1|+|3-2|=|2-1|+|2-2|,
ξ=2=|1-1|+|4-2|=|2-1|+|1-2|=|2-1|+|3-2|=|3-1|+|2-2|,
ξ=3=|2-1|+|4-2|=|3-1|+|4-2|=|3-1|+|3-2|=|4-1|+|2-2|,
ξ=4=|3-1|+|4-2|=|4-1|+|1-2|=|4-1|+|3-2|,
ξ=5=|4-1|+|4-2|,
∴ξ的分布列为:
 ξ 0 1 2 3 4 5
 P 
1
16
 
3
16
 
4
16
 
4
16
 
3
16
 
1
16
Eξ=
1
16
+1×
3
16
+2×
4
16
+3×
4
16
+4×
3
16
+5×
1
16
=
5
2
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中正确命题的个数是(  )
①对任意两向量
a
b
,均有:|
a
|-|
b
|<|
a
|+|
b
|
②若单位向量
a
b
夹角为120°,则当|2
a
+x
b
|(x∈R)取最小值时,x=1
③若
OB
=(6,-3),
OA
=(3,-4),
OC
=(5-m,-3-m),∠ABC为锐角,则实数m的取值范围是m>-
3
4

④在四边形ABCD中,(
AB
+
BC
)-(
CD
+
DA
)=
0
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2<4},B={x|-3≤x≤1},全集U=R.
(1)求集合A∩B;(∁UA)∩B;
(2)若集合B为函数f(x)=2x的定义域,求函数f(x)=2x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:函数f(x)=log 
1
3
(x2-mx+3m)是区间[1,+∞)上的减函数,命题q:函数f(x)=
4
3
x3-2mx2+(4m-3)x-m在(-∞,+∞)上单调递增.若p∧q为假,p∨q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,直线PB与平面ABCD所成角为
π
4
,AB=2,BC=4,E是PD的中点.
(Ⅰ)求证:PB∥平面ACE;
(Ⅱ)求二面角E-AC-D的正切值;
(Ⅲ)求多面体PABCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=
13
,SB=
29

(1)证明:SC⊥BC;
(2)求三棱锥的体积VS-ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:“若a≥0,则x2+x-a=0有实根”.
(Ⅰ)试写出命题p的逆否命题;
(Ⅱ)判断命题p的逆否命题的真假,并写出判断过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD为一直角梯形,侧面PAD是等边三角形,其中BA⊥AD,CD⊥AD,CD=2AD=2AB=2,平面PAD⊥底面ABCD,E是PC的中点.
(1)求证:BE∥平面PAD;
(2)求证:BE⊥CD;
(3)求三棱锥P-ACD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是菱形,PA=PD,∠BAD=60°,E是AD的中点,点Q在侧棱PC上.
(1)求证:AD⊥平面PBE
(2)若VP-BCDE=2VQ-ABCD,试求
CP
CQ
的值.

查看答案和解析>>

同步练习册答案