精英家教网 > 高中数学 > 题目详情
三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=
13
,SB=
29

(1)证明:SC⊥BC;
(2)求三棱锥的体积VS-ABC
考点:棱柱、棱锥、棱台的体积,空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:(1)利用SA⊥平面ABC,根据三垂线定理,可得SC⊥BC.
(2)求三棱锥S-ABC的体积,由题设条件得,棱锥的高是SA,底面是直角三角形,体积易求;
解答: (1)证明:∵∠SAB=∠SAC=90°
∴SA⊥AB,SA⊥AC,
又AB∩AC=A,
∴SA⊥平面ABC…(4分)
∴SA⊥BC…(5分)
又∠ACB=90°,∴AC⊥BC
∴BC⊥平面SAC…(7分)
∴SC⊥BC…(8分)
(2)解:在△ABC中,∠ACB=90°,AC=2,BC=
13
,∴AB=
17
,…(10分)
又在△SAB中,SA⊥AB,AB=
17
,SB=
29
,∴SA=2
3
…(12分)
又SA⊥平面ABC,∴VS-ABC=
1
3
×(
1
2
×2×
13
)×2
3
=
2
39
3
…(14分)
点评:本题以三棱锥为载体,考查线线垂直,考查几何体的体积,关键是正确运用线面垂直的判定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设直线ax+by+c=0的倾斜角为θ(θ≠0,θ≠
π
2
),且sinθ-cosθ=0,则a、b满足(  )
A、a+b=1
B、a-b=1
C、a+b=0
D、a-b=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2,|
b
|=1,(2
a
-3
b
)•(2
a
+
b
)=9
(1)求
a
b
的夹角θ;       
(2)求|
a
+
b
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y,z是周长等于1的三角形ABC的三边,
(1)求证:(1-x)(1-y)(1-z)≥8xyz   
(2)求证:x2+y2+z2
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒子中装有分别标有数字1、2、3、4的4个大小、形状完全相同的小球,现从中有放回地随机抽取2个小球,抽取的球的编号分别记为x1、x2,记ξ=|x1-1|+|x2-2|.
(Ⅰ)求ξ取最大值的概率;
(Ⅱ)求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知3sinx+4cosx=5,求tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若sin(π+α)=
4
5
,且α是第四象限角,求cos(α-2π)的值.
(2)求
tan(-150°)•cos(-570°)•cos(-1140°)
tan(-210°)•sin(-690°)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱A1B1C1-ABC中,AB⊥BC,E,F分别是A1B,AC1的中点.
(1)求证:EF∥平面ABC;
(2)求证:平面AEF⊥平面AA1B1B;
(3)若A1A=2AB=2BC=2a,求三棱锥F-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+ax-lnx.
(Ⅰ)若a=1,试求函数f(x)的极小值;
(Ⅱ)求经过坐标原点0的曲线y=f(x)的切线方程;
(Ⅲ)令g(x)=
f(x)
ex
,若函数g(x)在区间(0,1]上是减函数,求a的取值范围.

查看答案和解析>>

同步练习册答案