精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2+ax-lnx.
(Ⅰ)若a=1,试求函数f(x)的极小值;
(Ⅱ)求经过坐标原点0的曲线y=f(x)的切线方程;
(Ⅲ)令g(x)=
f(x)
ex
,若函数g(x)在区间(0,1]上是减函数,求a的取值范围.
考点:利用导数研究函数的单调性,利用导数研究曲线上某点切线方程
专题:函数的性质及应用,导数的综合应用
分析:(Ⅰ)先求导,利用导数求极值.
(Ⅱ)设切点为M(t,f(t)),切线的斜率k=2t+a-
1
t
,又切线过原点,得到关于t的方程t2+lnt-1=0,设设h(t)=t2+lnt-1,求导,方程t2+lnt-1=0有唯一解t=1.问题得以解决.
(Ⅲ)先求导,再分离参数a,对a进行分类讨论,利用导数与函数的单调性进行判断,求出m的范围.
解答: 解:(Ⅰ)a=1时,f(x)=x2+x-lnx.x∈(0,+∞)
∴f′(x)=2x+1-
1
x
=
(2x-1)(x+1)
x

令f′(x)=0,解得x=
1
2

当0<x<
1
2
,时,f′(x)>0,当x>
1
2
时f′(x)<0,
∴f(x) 在x=
1
2
处取得极小值
3
4
+ln2

(Ⅱ)设切点为M(t,f(t)),f′(x)=2x+a-
1
x

切线的斜率k=2t+a-
1
t
,又切线过原点,
∴k=
f(t)
t

f(t)
t
=2t+a-
1
t

即t2+at-lnt=2t2+at-1,
∴t2+lnt-1=0,
t=1满足方程t2+lnt-1=0,设h(t)=t2+lnt-1,
∴h′(t)=2t+
1
t

∴h′(t)=2t+
1
t
>0.h(t)在(0.+∞)递增,且 h(1)=0,方程t2+lnt-1=0有唯一解t=1.切点的横坐标为1; 切点为(1,1+a),
∴k=a+1,
所以所求切线方程为y=(a+1)x;
(Ⅲ)g′(x)=
f′(x)-f(x)
ex
,若函数g(x)在区间(0,1]上是减函数,
则?x∈(0,1],g′(x)≤0,
即f′(x)≤f(x),
所以x2-2x+
1
x
-lnx+a(x-1)≥0,
设F(x)=x2-2x+
1
x
-lnx+a(x-1),
∴F′(x)=2x-2-
1
x2
-
1
x
+a=
(1-x)(2x2+2x+1)
x2
-2+a,
若a≤2,则F′(x)≤0,F(x)在(0,1]递减,F(x)≥F(1)=0
即不等式f′(x)≤f(x),?x∈(0,1]恒成立
若a>2,设G(x)=2x-2-
1
x2
-
1
x

∴G′(x)=2+
2
x3
+
1
x2
>0,
∴G(x)在(0,1]上递增,G(x)≤G(1)=-2
?x0∈(0,1],使得G(x0)=-a,
x∈(x0,1],G(x)>-a,即F′(x)>0,F(x)在(x0,1)上递增,F(x)≤F(1)=0
这与?x∈(0,1],x2-2x+
1
x
-lnx+a(x-1)≥0,矛盾,
 综上所述,a≤2.
点评:本题主要考查导数的几何意义以及利用导数研究函数的极值和最值问题,考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=
13
,SB=
29

(1)证明:SC⊥BC;
(2)求三棱锥的体积VS-ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

一个正四棱台的上、下底面边长分别为4cm和10cm,高为4cm,求正四棱台的侧面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
3
ax3+
1
2
bx2+cx+d(a,b,c,d为常数且a≠0),g(x)=f′(x)(f′(x)为f(x)的导数).
(Ⅰ)若g(x)满足:①g′(0)>0;②对于任意实数x,都有g(x)≥0.求μ=
g(1)
g′(0)
的最小值;
(Ⅱ)若a=1且对于任意实数x∈(-∞,0)有f′(x)>0;对于任意实数x∈(0,4)有f′(x)<0.求b的取值范围;
(Ⅲ)若a=1,b=-2e,讨论关于x的方程lnx=x•g(x)的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是菱形,PA=PD,∠BAD=60°,E是AD的中点,点Q在侧棱PC上.
(1)求证:AD⊥平面PBE
(2)若VP-BCDE=2VQ-ABCD,试求
CP
CQ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆x2+
y2
4
=1的左,右两个顶点分别为A、B.曲线C是以A、B两点为顶点,离心率为
5
的双曲线.设点P在第一象限且在曲线C上,直线AP与椭圆相交于另一点T.
(1)求曲线C的方程;
(2)设P、T两点的横坐标分别为x1、x2,证明:x1•x2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(
π
4
+x)cos(
π
4
-x)-1
(1)求函数f(x)的周期;
(2)若函数g(x)=f(x)-2
3
cos2x,试求函数g(x)的单调递增区间;
(3)若f2(x)-cos2x≥m2-m-7恒成立,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知OPQ是半径为1,圆心角为
π
4
的扇形,C是扇形弧上的动点.ABCD是扇形的内接矩形,记∠COP=θ.
(1)求当角θ取何值时,矩形ABCD的面积最大?并求出这个最大值.
(2)当矩形ABCD的面积为
6
-2
4
时,求角θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|-2≤x≤3},B={x|m-1≤x≤2m+1}.
(1)当x∈N*时写出A的所有子集;
(2)当x∈R且A∩B=∅时,求m的取值范围.

查看答案和解析>>

同步练习册答案