精英家教网 > 高中数学 > 题目详情
12.函数f(x)=log3(9-x2)的定义域是(-3,3),值域是(-∞,2].

分析 根据对数函数的真数大于0,列出不等式,求出解集即可;
根据f(x)的定义域与对数函数的单调性,求出f(x)的值域.

解答 解:∵f(x)=log3(9-x2),
∴9-x2>0,
即x2<9,
解得-3<x<3,
∴f(x)的定义域是(-3,3);
又x∈(-3,3)时,x2∈[0,9),
∴0<9-x2≤9,
∴log3(9-x2)≤2,
∴f(x)的值域是(-∞,2].
故答案为:(-3,3);(-∞,2].

点评 本题考查了求函数的定义域和值域的应用问题,可考查了不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.要得到$y=sin(2x-\frac{π}{4})$的图象,且使平移的距离最短,则需将y=sin2x的图象向右平移$\frac{π}{8}$个单位即可得到.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知二次函数f(x)的两个零点分别为$\frac{b}{1-a}$,$\frac{b}{1+a}$(0<b<a+1),f(0)=b2.定义card(A):集合A中的元素个数,若“$\left\{\begin{array}{l}x∈A\\ card(A∩Z)=4\end{array}\right.$”是“f(x)>0”的充要条件,则实数a的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.集合A={x|x2-x-2≤0},B={x|x<1},则A∩(∁RB)=(  )
A.{x|x>1}B.{x|1<x≤2}C.{x|x≥1}D.{x|1≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知c>0,且c≠1,设p:函数y=cx在R上递减;q:函数f(x)=x2-2cx-1在($\frac{1}{2}$,+∞)上为增函数,若“p且q”为假,“p或q”为真,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知tanα=$\sqrt{3}$,π<α<$\frac{3π}{2}$,求cosα-sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=$\frac{\sqrt{3}}{2}$sin2x+cos2x的最小正周期为π,最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=f(x)在x=x0处的导数f′(x0)的几何意义是(  )
A.在点x0处的斜率
B.曲线y=f(x)在点(x0,f(x0))处切线的斜率
C.在点(x0,f(x0))处的切线与x轴所夹锐角的正切值
D.点(x0,f(x0))与点(0,0)连线的斜率

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\left\{\begin{array}{l}{7x-5y-23≤0}\\{x+7y-11≤0}\\{4x+y+10≥0}\end{array}\right.$,则x2+y2的最大值为37,最小值为0.

查看答案和解析>>

同步练习册答案