精英家教网 > 高中数学 > 题目详情
7.已知sinθ+cosθ=$\frac{\sqrt{3}}{2}$,求作以sinθ,cosθ为根的一元二次方程.

分析 先根据sinθ+cosθ=$\frac{\sqrt{3}}{2}$,求出sinθcosθ=-$\frac{1}{8}$,再根据根与系数的关系即可得出答案.

解答 解:∵sinθ+cosθ=$\frac{\sqrt{3}}{2}$,
∴(sinθ+cosθ)2=$\frac{3}{4}$,
∴sin2θ+cos2θ+2sinθcosθ=$\frac{3}{4}$,
∴sinθcosθ=-$\frac{1}{8}$,
∴以sinθ,cosθ为根的一元二次方程是x2-$\frac{\sqrt{3}}{2}$x-$\frac{1}{8}$=0.

点评 本题考查了根与系数的关系,根据已知条件和同角三角函数的关系求出sinθcosθ的值是本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(ax)=x,g(x)=2loga(2x+2).
(1)求f(x)的解析式;
(2)若函数F(x)=g(x)-f(x)在x∈[$\frac{1}{2}$,2]有最小值2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x5+x-3在区间[1,2]内有零点,求出方程x5+x-3=0在区间[1,2]的一个实数解,精度为0.1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.定义函数f(x)=max{x2,x-2},x∈(-∞,0)∪(0,+∞),求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线l过抛物线y2=2px(p>0)的焦点,且与抛物线交于A(a,b),B(m,n)两点,则|AB|等于a+b+p(用点的坐标和p表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知sinα=2sinβ,tanα=3tanβ,求cosα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a∈R,函数f(x)=4x-(2a+2)•2x+2a+1
(1)解关于x的不等式f(x)<0;
(2)若f(x)>$\frac{2-{2}^{x}}{{2}^{x}}$对任意x∈(1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设实数a,x,y满足$\left\{\begin{array}{l}{x+y=2a-1}\\{{x}^{2}+{y}^{2}={a}^{2}+2a-3}\end{array}\right.$,则xy的取值范围是(  )
A.[2-$\frac{\sqrt{2}}{2}$,2+$\frac{\sqrt{2}}{2}$]B.[$\frac{11}{4}$-$\frac{3\sqrt{2}}{2}$,2-$\frac{\sqrt{2}}{2}$]C.[2+$\frac{\sqrt{2}}{2}$,$\frac{11}{4}$+$\frac{3\sqrt{2}}{2}$]D.[$\frac{11}{4}$-$\frac{3\sqrt{2}}{2}$,$\frac{11}{4}$+$\frac{3\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若1og3[1og4(log5a)]=log4[log3(log5b)]=0,则$\frac{a}{b}$=5.

查看答案和解析>>

同步练习册答案