精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=x5+x-3在区间[1,2]内有零点,求出方程x5+x-3=0在区间[1,2]的一个实数解,精度为0.1.

分析 先证明方程x5+x-3=0在区间[1,2]内有唯一一个实数解,可先函数f(x)=x5+x-3在[1,2]内为单调函数,再结合根的存在性定理即可.求解可用二分法.

解答 解:考查函数f(x)=x5+x-3,
∵f(1)=-1<0,f(2)=31>0,
∴函数f(x)=x5+x-3在区间[1,2]有一个零点x.
∵函数f(x)=x5+x-3在(-∞,+∞)上是增函数,
∴方程x5+x-3=0在区间[1,2]内有唯一的实数解.
取区间[1,2]的 中点x1=1.5,用计算器算得f(1.5)≈6.09>0,∴x∈(1,1.5).
同理,可得x∈(1,1.25),x∈(1.125,1.25),x∈(1.125,1.1875),x∈(1.125,1.156 25),x∈(1.125,1.1406 25).
由于|1.1406 25-1.125|<0.1,此时区间(1.125,1.1406 25)的两个端点精确到0.1的近似值都是1.1.

点评 函数零点存在定理,考查二分法,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知a∈R,二次函数f(x)=ax2-2x-2a,设不等式f(x)>0的解集为A,又集合B={x|$\frac{3-x}{x-1}$>0},若A∩B=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+6x-6,x≤2}\\{{a}^{x}-a,x>2}\end{array}\right.$其中a>0,a≠1,若对任意的x1,x2∈R,x1≠x2,恒有[f(x1)-f(x2)](x1-x2)>0,则实数a的取值范围a≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.使f(x)=sin(2x+θ)-$\sqrt{3}$cos(2x+θ)为偶函数,且在[$\frac{π}{4}$,$\frac{π}{3}$]上是减函数的θ的一个值是(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.-$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.命题A:关于x的不等式ln(ax2+ax+2)>0的解集为R,命题B:使不等式log2a2<4成立的a的取值范围,判断A是B的什么条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)对-切实数x,y∈[-4,4]部有f(x+y)=f(x)+f(y).且当x>0时.f(x)<0.又f(1)=-$\frac{2}{3}$.(1)试判定该函数的奇偶性; 
(2)证明该函数在[-4,4]上是减函数;
(3)若f(x)+f(x-3)≤-2.求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知不等式组$\left\{\begin{array}{l}{{x}^{2}-x-2>0}\\{2{x}^{2}+(5+2k)x+5k<0}\end{array}\right.$的整数解只有-2,则k的范围是(  )
A.-3≤k<2B.-2≤k≤-1C.-3<k<-1D.-3≤k<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知sinθ+cosθ=$\frac{\sqrt{3}}{2}$,求作以sinθ,cosθ为根的一元二次方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)的定义域是[0,1),则f($\frac{x}{x+1}$)的定义域为{x|x≥0}.

查看答案和解析>>

同步练习册答案