分析 注意到△=4+8a2>0,则函数有两个零点,由a的正负,确定不等式解集的形式.结合着数轴分类讨论.
解答 .解:由题意可知二次函数a≠0,
令f(x)=0解得其两根为x1=$\frac{1+\sqrt{1+2{a}^{2}}}{a}$,x2=$\frac{1-\sqrt{1+2{a}^{2}}}{a}$,
(i)当a>0时,x1>0,x2<0,
A={x|x<x2}∪{x|x>x1},则A∩B=ϕ的充要条件是x1≥3,
即$\frac{1+\sqrt{1+2{a}^{2}}}{a}$≥3,
解得a∈(0,$\frac{6}{7}$]
(ii)当a<0时,x1<0,x2>0,A={x|x1<x<x2},
A∩B=ϕ的充要条件是x2≤1,
即$\frac{1-\sqrt{1+2{a}^{2}}}{a}$≤1,
解得a∈[-2,0)
综上,使A∩B=ϕ成立的a的取值范围为[-2,0)∪(0,$\frac{6}{7}$].
点评 在对集合的相关问题进行求解时,分类讨论时经常考查到的思想方法,另外对于一元二次不等式的解法也是一个基本的知识点,要熟练掌握
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈(-1,1)使得cosx<$\frac{1}{2}$ | |
| B. | “-3<m<0”是“函数f(x)=x+log2x+m在区间($\frac{1}{2}$,2)上有零点”的必要不充分条件 | |
| C. | x=$\frac{π}{6}$是曲线f(x)=$\sqrt{3}$sin2x+cos2x的一条对称轴 | |
| D. | 若x∈(0,2),则在曲线f(x)=ex(x-2)上任意一点处的切线的斜率不小于-$\frac{1}{e}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com