精英家教网 > 高中数学 > 题目详情
19.已知等比数列{an}的各项均为正数,且2a1,$\frac{{a}_{3}}{2}$,a2成等差数列,则$\frac{{a}_{2017}+{a}_{2016}}{{a}_{2015}+{a}_{2014}}$=(  )
A.2B.3C.4D.9

分析 先根据等差数列的中项性质建立等式求得公比q,进而代入原式求得答案.

解答 解:设公比为q(q>0)的等比数列{an}的各项均为正数,
由2a1,$\frac{{a}_{3}}{2}$,a2成等差数列可知a3=2a1+a2
∴a1q2=2a1+a1q,整理可得q2-q-2=0,
求得q=2或-1(舍去),
∴$\frac{{a}_{2017}+{a}_{2016}}{{a}_{2015}+{a}_{2014}}$=$\frac{{a}_{2014}{q}^{3}+{a}_{2014}{q}^{2}}{{a}_{2014}q+{a}_{2014}}$=$\frac{{q}^{3}+{q}^{2}}{q+1}$=q2=4,
故选:C.

点评 本题主要考查了等比数列的通项公式和等差数列中项性质的运用.等差中项是解决等差数列问题的常用性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知实数x,y满足$\left\{\begin{array}{l}x+y≥1\\ mx-y≤0\\ 2x-y+2≥0\end{array}\right.$,若z=3x-y的最大值为1,则m的值为(  )
A.$\frac{8}{3}$B.2C.1D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知曲线C的参数方程是$\left\{\begin{array}{l}{x=\frac{{t}^{2}}{4}}\\{y=t}\end{array}\right.$,直线l的方程是x=ky+1(k∈R).
(Ⅰ)求曲线C的普通方程;
(Ⅱ)若直线l与曲线C相交所得的弦长是4,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数(1+i)z=1-i(i是虚数单位),则z的共轭复数的虚部是(  )
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(a+1)lnx-x2,$g(x)=\frac{{{x^2}+a}}{x}$.
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)若函数f(x)与g(x)在(0,+∞)上的单调性正好相反.
(1)对于$?{x_1},{x_2}∈[\frac{1}{e},3]$,不等式$\frac{1}{{f({x_1})-g({x_2})}}≤\frac{1}{t-1}$恒成立,求实数t的取值范围;
(2)令h(x)=xg(x)-f(x),两正实数x1、x2满足h(x1)+h(x2)+6x1x2=6,证明0<x1+x2≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a>0,b>0,则“log2a>log2b”是“${({\frac{1}{3}})^a}<{({\frac{1}{3}})^b}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知正项数列{an}的首项a1=1,前n项和为Sn,若以(an,Sn)为坐标的点在曲线y=$\frac{1}{2}$x(x+1)上,则数列{an}的通项公式为an=n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=ln(1+x)-ln(1-x),给出以下四个命题:
①?x∈(-1,1),有f(-x)=-f(x);
②?x1,x2∈(-1,1)且x1≠x2,有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$;
③?x1,x2∈(0,1),有$f(\frac{{{x_1}+{x_2}}}{2})≤\frac{{f({x_1})+f({x_2})}}{2}$;
④?x∈(-1,1),|f(x)|≥2|x|.
其中所有真命题的序号是(  )
A.①②B.③④C.①②③D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知中心在原点的双曲线,其右焦点与圆x2-4x+y2+1=0的圆心重合,且渐近线与该圆相离,则双曲线离心率的取值范围是(  )
A.(1,$\frac{2\sqrt{3}}{3}$)B.(1,2)C.($\frac{2\sqrt{3}}{3}$,+∞)D.(2,+∞)

查看答案和解析>>

同步练习册答案