精英家教网 > 高中数学 > 题目详情
9.已知实数x,y满足$\left\{\begin{array}{l}x+y≥1\\ mx-y≤0\\ 2x-y+2≥0\end{array}\right.$,若z=3x-y的最大值为1,则m的值为(  )
A.$\frac{8}{3}$B.2C.1D.$\frac{2}{3}$

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得m的值.

解答 解:由约束条件足$\left\{\begin{array}{l}x+y≥1\\ mx-y≤0\\ 2x-y+2≥0\end{array}\right.$,作出可行域如图,
联立$\left\{\begin{array}{l}{2x-y+2=0}\\{mx-y=0}\end{array}\right.$,解得A($\frac{2}{m-2}$,$\frac{2m}{m-2}$),
化目标函数z=3x-y为y=3x-z,
由图可知,当直线过A时,直线在y轴上的截距最小,
z有最大值为$\frac{6}{m-2}$-$\frac{2m}{m-2}$=1,
解得:m=$\frac{8}{3}$.
故选:A

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知平面内两点A(0,-a),B(0,a)(a>0),有一动点P在平面内,且直线PA与直线PB的斜率分别为k1,k2,令k1•k2=m,其中m≠0.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)已知N点在圆x2+y2=a2上,设m∈(-1,0)时对应的曲线为C,设F1,F2是该曲线的两个焦点,试问是否存在点N,使△F1NF2的面积S=$\sqrt{-m}$•a2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.△ABC中,AB=2,AC=5,cosA=$\frac{4}{5}$,在△ABC内任意取一点P,则△PAB面积大于1且小于等于2的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某早餐店每天制作甲、乙两种口味的糕点共n(n∈N*)份,每份糕点的成本1元,售价2元,如果当天卖不完,剩下的糕点作废品处理,该早餐店发现这两种糕点每天都有剩余,为此整理了过往100天这两种糕点的日销量(单位:份),得到如下统计数据:
 甲口味糕点日销量 48 49 50 51
 天数 20 40 20 20
 乙口味糕点日销量 48 49 50 51
 天数 40 30 20 10
以这100天记录的各销量的频率作为各销量的概率,假设这两种糕点的日销量相互独立.
(1)记该店这两种糕点每日的总销量为X份,求X的分布列;
(2)早餐店为了减少浪费,提升利润,决定调整每天制作糕点的份数.
①若产生浪费的概率不超过0.6,求n的最大值;
②以销售这两种糕点的日总利润的期望值为决策依据,在每天所制糕点能全部卖完与n=98之中选其一,应选哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过点P(1,2)作两条直线pm,pn,分别与抛物线y2=4x相交于点M和点N,连接MN,若直线PM,PN,MN的斜率都存在且不为零,设其斜率分别为k1,k2,k3,则$\frac{1}{{k}_{1}}+\frac{1}{{k}_{2}}-\frac{1}{{k}_{3}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若x,y满足$\left\{\begin{array}{l}{x+y≥0}\\{x≥1}\\{x-y≥0}\end{array}\right.$,则下列不等式恒成立的是(  )
A.y≥0B.x≥2C.2x-y+1≥0D.x+2y+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,点F是抛物线τ:x2=2py (p>0)的焦点,点A是抛物线上的定点,且$\overrightarrow{AF}$=(2,0),点B,C是抛物线上的动点,直线AB,AC斜率分别为k1,k2
( I)求抛物线τ的方程;
(Ⅱ)若k1-k2=2,点D是点B,C处切线的交点,记△BCD的面积为S,证明S为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=|x-a|+|2x+2|-5(a∈R).
(Ⅰ)试比较f(-1)与f(a)的大小;
(Ⅱ)当a≥-1时,若函数f(x)的图象和x轴围成一个三角形,则实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等比数列{an}的各项均为正数,且2a1,$\frac{{a}_{3}}{2}$,a2成等差数列,则$\frac{{a}_{2017}+{a}_{2016}}{{a}_{2015}+{a}_{2014}}$=(  )
A.2B.3C.4D.9

查看答案和解析>>

同步练习册答案