精英家教网 > 高中数学 > 题目详情
17.某早餐店每天制作甲、乙两种口味的糕点共n(n∈N*)份,每份糕点的成本1元,售价2元,如果当天卖不完,剩下的糕点作废品处理,该早餐店发现这两种糕点每天都有剩余,为此整理了过往100天这两种糕点的日销量(单位:份),得到如下统计数据:
 甲口味糕点日销量 48 49 50 51
 天数 20 40 20 20
 乙口味糕点日销量 48 49 50 51
 天数 40 30 20 10
以这100天记录的各销量的频率作为各销量的概率,假设这两种糕点的日销量相互独立.
(1)记该店这两种糕点每日的总销量为X份,求X的分布列;
(2)早餐店为了减少浪费,提升利润,决定调整每天制作糕点的份数.
①若产生浪费的概率不超过0.6,求n的最大值;
②以销售这两种糕点的日总利润的期望值为决策依据,在每天所制糕点能全部卖完与n=98之中选其一,应选哪个?

分析 (1)由题意知X的可能取值为96,97,98,99,100,101,102,分别求出相应的概率,由此能求出X的分布列.
(2)①求出P(X=96)+P(X=97)=0.3,P(X=96)+P(X=97)+P(X=99)=0.54,由此能求出n的最大值.
②由(1)知在每天所制糕点能全部卖完时,n=96,此时销售这两种糕点的日总利润的期望值为96.再求出当n=98时,销售这两种糕点的日总利润的期望值,由此得到应选n=98.

解答 解:(1)由题意知X的可能取值为96,97,98,99,100,101,102,
P(X=96)=0.2×0.4=0.08,
P(X=97)=0.2×0.3+0.4×0.4=0.22,
P(X=98)=0.4×0.3+0.2×0.2+0.2×0.4=0.24,
P(X=99)=0.2×0.1+0.4×0.2+0.4×0.2+0.2×0.3=0.24,
P(X=100)=0.4×0.1+0.3×0.2+0.2×0.2=0.14,
P(X=101)=0.2×0.1+0.2×0.2=0.06,
P(X=102)=0.2×0.1=0.02.
∴X的分布列为:

 X 96 97 98 99 100 101 102
 P 0.08 0.22 0.24 0.24 0.14 0.06 0.02
(2)①∵产生浪费的概率不超过0.6,
P(X=96)+P(X=97)=0.08+0.22=0.3,
P(X=96)+P(X=97)+P(X=99)=0.08+0.22+0.24=0.54,
∴n的最大值为98.
②由(1)知在每天所制糕点能全部卖完时,n=96,
此时销售这两种糕点的日总利润的期望值为96.
当n=98时,销售这两种糕点的日总利润的期望值为:98+(-2×0.08)+(-1×0.22)=97.62.
∴应选n=98.

点评 本题考查离散型随机变量的分布列的求法及应用,考查推理论证能力、运算求解能力、数据处理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知定义在R上的偶函数f(x),其导函数为f′(x);当x≥0时,恒有$\frac{x}{2}$f′(x)+f(-x)≤0,若g(x)=x2f(x),则不等式g(x)<g(1-2x)的解集为(  )
A.($\frac{1}{3}$,1)B.(-∞,$\frac{1}{3}$)∪(1,+∞)C.($\frac{1}{3}$,+∞)D.(-∞,$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知AB⊥AC,AB=AC,点M满足$\overrightarrow{AM}=t\overrightarrow{AB}+({1-t})\overrightarrow{AC}$,若$∠BAM=\frac{π}{3}$,则t的值为(  )
A.$\sqrt{3}-\sqrt{2}$B.$\sqrt{2}-1$C.$\frac{{\sqrt{3}-1}}{2}$D.$\frac{{\sqrt{3}+1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知F(1,0),直线l:x=-1,P为平面上的动点,过点P作l的垂线,垂足为点Q,且$\overrightarrow{QP}$•$\overrightarrow{QF}$=$\overrightarrow{FP}$•$\overrightarrow{FQ}$.
(1)求动点P的轨迹G的方程;
(2)点F关于原点的对称点为M,过F的直线与G交于A、B两点,且AB不垂直于x轴,直线AM交曲线G于C,直线BM交曲线C于D.
①证明直线AB与曲线CD的倾斜角互补;
②直线CD是否经过定点?若经过定点,求出这个定点,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足b=acosC+$\frac{\sqrt{3}}{3}$csinA.
(Ⅰ)求角A的大小;
(Ⅱ)若△ABC且的面积为$\sqrt{3}$,且AB边上的中线长为$\sqrt{2}$,求边长b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:t=$\frac{π}{2}$,命题q:${∫}_{0}^{t}$sinxdx=1,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数x,y满足$\left\{\begin{array}{l}x+y≥1\\ mx-y≤0\\ 2x-y+2≥0\end{array}\right.$,若z=3x-y的最大值为1,则m的值为(  )
A.$\frac{8}{3}$B.2C.1D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点$({2,\sqrt{3}})$在双曲线$\frac{x^2}{4}-\frac{y^2}{a}=1({a>0})$的一条浙近线上,则a=(  )
A.$\sqrt{3}$B.3C.2D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数(1+i)z=1-i(i是虚数单位),则z的共轭复数的虚部是(  )
A.iB.1C.-iD.-1

查看答案和解析>>

同步练习册答案