精英家教网 > 高中数学 > 题目详情

【题目】某公司租赁甲、乙两种设备生产 两类产品,甲种设备每天能生产类产品5件和类产品10件,乙种设备每天能生产类产品6件和类产品20件.已知设备甲每天的租赁费为300元,设备乙每天的租赁费为400元,现该公司至少要生产类产品50件, 类产品140件,则所需租赁费最少为__________元.

【答案】3200

【解析】设甲种设备需要生产x,乙种设备需要生产y,该公司所需租赁费为z,z=300x+400y,

甲、乙两种设备生产AB两类产品的情况为下表所示:

产品

设备

A类产品

()(50)

B类产品

()(140)

租赁费

()

甲设备

5

10

300

乙设备

6

20

400

则满足的关系为

作出不等式表示的平面区域,

目标函数z=300x+400y取得最低为3200.

故答案为:3200.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经销商经销某种农产品,在一个销售季度内,每售出该产品获利润500元,未售出的产品,每亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如图所示.经销商为下一个销售季度购进了该农产品.以)表示下一个销售季度内的市场需求量, (单位:元)表示下一个销售季度内经销该农产品的利润.

(Ⅰ)将表示为的函数;

(Ⅱ)根据直方图估计利润不少于57000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为 为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点.

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)若点 在曲线上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱台中, 底面,四边形为菱形, .

(Ⅰ)若中点,求证: 平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学从参加高一年级上学期期末考试的学生中抽出60名学生将其成绩(均为整数)分成六段[4050)[5060)[90100]后画出如下部分频率分布直方图.观察图形的信息回答下列问题

(1)估计这次考试的及格率(60分及以上为及格).

(2)从成绩是70分以上(包括70)的学生中选一人求选到第一名学生的概率(第一名学生只一人).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的离心率为 为椭圆的右焦点, .

(Ⅰ)求椭圆的方程;

(Ⅱ)设为原点, 为椭圆上一点, 的中点为,直线与直线交于点,过,交直线于点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药(单位:微克)的统计表:

(1)令,利用给出的参考数据求出关于的回归方程.(精确到0.1)

参考数据:

其中

(2)对于某种残留在蔬菜上的农药,当它的残留量不高于20微克时对人体无害,为了放心食用该蔬菜,请估计至少需用用多少千克的清水清洗1千克蔬菜?(精确到0.1,参考数据

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,( 为常数)

(1)若处的切线方程为为常数),求的值;

(2)设函数的导函数为,若存在唯一的实数,使得同时成立,求实数的取值范围;

(3)令,若函数存在极值,且所有极值之和大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4位学生,每位学生1本,则不同的赠送方法共有( )

A. 15种 B. 20种 C. 48种 D. 60种

查看答案和解析>>

同步练习册答案