【题目】设二次函数
.
(Ⅰ)若
,且
在
上的最大值为
,求函数
的解析式;
(Ⅱ)若对任意的实数
,都存在实数
,使得不等式
成立,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:
日期 | 11月1日 | 11月2日 | 11月3日 | 11月4日 | 11月5日 |
温差 | 8 | 11 | 12 | 13 | 10 |
发芽数 | 16 | 25 | 26 | 30 | 23 |
设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(参考:
,
)
(1)若选取的是11月1日与11月5日的两组数据进行检验,请根据11月2日至11月4日的三组数据,求出
关于
的线性回归方程
;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知
(
为常数,
且
),设
是首项为4,公差为2的等差数列.
(1)求证:数列{
}是等比数列;
(2)若
,记数列
的前n项和为
,当
时,求
;
(3)若
,问是否存在实数
,使得
中每一项恒小于它后面的项?
若存在,求出实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件。从某企业生产的桥梁构件中抽取
件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间
,
,
内的频率之比为
.
![]()
(1)求这些桥梁构件质量指标值落在区间
内的频率;
(2)用分层抽样的方法在区间
内抽取一个容量为
的样本,将该样本看成一个总体,从中任意抽取
件桥梁构件,求这
件桥梁构件都在区间
内的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,抛物线
的焦点为
,抛物线上一定点
.
![]()
(1)求抛物线
的方程及准线
的方程;
(2)过焦点
的直线(不经过
点)与抛物线交于
两点,与准线
交于点
,记
的斜率分别为
,问是否存在常数
,使得
成立?若存在
,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
经过点
.
(1)求抛物线
的方程及其准线方程;
(2)过抛物线
的焦点
的直线
交
于
两点,设
为原点.
(ⅰ)当直线
的斜率为1时,求
的面积;
(ⅱ)当
时,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com