【题目】已知函数.
(1)讨论函数的单调性;
(2)当时,不等式恒成立,求实数的取值范围.
【答案】(1)详见解析;(2).
【解析】试题分析:(1)先求函数的定义域,求导通分后发现分母是含有参数的二次函数,根据其判别式进行分类讨论,由此求得函数的单调区间.(2)将和代入原函数,可将原不等式化简为恒成立,利用分离常数法,可将问题转化为切线的斜率来求解.
试题解析:(1),
令,判别式为:,
①:当,得,
此时,从而,
所以在上单调递增.
②:当,即,
令,得方程的根
(舍去),,
若,此时,,得,
由,得,
∴在上单调递增,在单调递减,
若,此时的对称轴为,
,
∴,从而在上单调递增.
综上:当,在上单调递增;当,在上单调递增,单调递减.
(2)由题意有恒成立,
即,
即恒成立,
当时,不等式显然恒成立,
当时,,
所以,则,于是
,在上恒成立,
令,
设,,
则,且两点在的图象上,
又,
故,
所以,
故为所求.
科目:高中数学 来源: 题型:
【题目】某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至元,则本年度新增用电量(亿千瓦时)与元成反比例.又当时,.
(1)求与之间的函数关系式;
(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年增加20%?[收益用电量(实际电价-成本价)]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家用电器公司生产一新款热水器,首先每年需要固定投入 200万元,其次每生产1百台,需再投入0.9万元.假设该公司生产的该款热水器当年能全部售出,但每销售1百台需另付运输费0.1万元.根据以往的经验,年销售总额(万元)关于年产量(百台)的函数为.
(1)将年利润表示为年产量的函数;
(2)求该公司生产的该款热水器的最大年利润及相应的年产量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线在平面直角坐标系下的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.
(1)求曲线的普通方程及极坐标方程;
(2)直线的极坐标方程是,射线: 与曲线交于点与直线交于点,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着移动互联网时代的到来,手机的使用非常普遍,“低头族”随处可见。某校为了解家长和教师对学生带手机进校园的态度,随机调查了100位家长和教师,得到情况如下表:
教师 | 家长 | |
反对 | 40 | 20 |
支持 | 20 | 20 |
(1)是否有95%以上的把握认为“带手机进校园与身份有关”,并说明理由;
(2)把以上频率当概率,随机抽取3位教师,记其中反对学生带手机进校园的人数为X,求随机变量X的分布列和数学期望.
附:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如右图所示,设E、F、E1、F1分别是长方体ABCD-A1B1C1D1的棱AB、CD、A1B1、C1D1的中点,则平面EFD1A1与平面BCF1E1的位置关系是 ( )
A. 平行 B. 相交 C. 异面 D. 不确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区发生里氏8.0级特大地震.地震专家对发生的余震进行了监测,记录的部分数据如下表:
强度(J) | 1.6×1019 | 3.2×1019 | 4.5×1019 | 6.4×1019 |
震级(里氏) | 5.0 | 5.2 | 5.3 | 5.4 |
注:地震强度是指地震时释放的能量.
地震强度(x)和震级(y)的模拟函数关系可以选用y=alg x+b(其中a,b为常数).利用散点图(如图)可知a的值等于________.(取lg 2=0.3进行计算)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com