精英家教网 > 高中数学 > 题目详情
2.已知α∈($\frac{π}{2}$,π),sinα=$\frac{4}{5}$,则sin2α=$-\frac{24}{25}$.

分析 由已知利用同角三角函数基本关系式可求cosα的值,利用二倍角的正弦函数公式即可计算得解.

解答 解:∵α∈($\frac{π}{2}$,π),sinα=$\frac{4}{5}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{3}{5}$,
∴sin2α=2sinαcosα=2×$\frac{4}{5}×(-\frac{3}{5})$=$-\frac{24}{25}$.
故答案为:$-\frac{24}{25}$.

点评 本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.观察程序框图如图所示.若a=5,则输出b=26.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某种家用电器能使用三年的概率为0.8,能使用四年的概率为0.4,已知某一这种家用电器已经使用了三年,则它能够使用到四年的概率为(  )
A.0.32B.0.4C.0.5D.0.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某中学有三个年级,各年级男、女生人数如表:
高一年级高二年级高三年级
男生380300370
女生370200z
已知在全校学生中随机抽取1名学生,抽到高二年级男生的概率为0.15.
(1)求z的值;  
(2)用分层抽样的方法在高二年级中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2名学生,求这2名学生均为男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.两座灯塔A,B与海洋观察站C的距离分别为a海里、2a海里,灯塔A在观察站的北偏东35°,灯塔B在观察站的南偏东25°,则灯塔A与灯塔B的距离为(  )
A.3a海里B.$\sqrt{7}$a海里C.$\sqrt{5}$a海里D.$\sqrt{3}$a海里

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2b-c)cosA-acosC=0.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,△ABC的面积为$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)=-x2+2mx-m2-1的单调递增区间与函数值域相同,则实数m=(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知α,β∈(0,$\frac{π}{2}$),满足tan(α+β)=4tanβ,则tanα的最大值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列各函数中,最小值为2的是(  )
A.$y=x+\frac{1}{x}$B.$y=sinx+\frac{1}{sinx},x∈(0,\frac{π}{2})$
C.$y=\frac{{{x^2}+2}}{{\sqrt{{x^2}+1}}}$D.$y=x+\frac{2}{{\sqrt{x}}}-2$

查看答案和解析>>

同步练习册答案