精英家教网 > 高中数学 > 题目详情
2.如图,在正方体ABCD-A1B1C1D1中,E为BC1的中点,则DE与面BCC1B1所成角的正切值为$\sqrt{2}$.

分析 以D为原点,以DA为x轴,以DC为y轴,以DD1为z轴,建立空直角坐标系,利用向量法能求出DE与面BCC1B1所成角的正切值.

解答 解:设正方体ABCD-A1B1C1D1的棱长为2,
以D为原点,以DA为x轴,以DC为y轴,
以DD1为z轴,建立空直角坐标系,
∵E为BC1的中点,
∴D(0,0,0),E(1,2,1),
∴$\overrightarrow{DE}$=(1,2,1),
设DE与面BCC1B1所成角的平面角为θ,
∵面BCC1B1的法向量$\overrightarrow{n}$=(0,1,0),
∴sinθ=|cos<$\overrightarrow{DE}$,$\overrightarrow{n}$>|=|$\frac{2}{\sqrt{6}}$|=$\frac{\sqrt{6}}{3}$,
∴cosθ=$\frac{\sqrt{3}}{3}$,
∴tanθ=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查直线与平面所成角的正切值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.过点(-1,3)且与直线x-2y+1=0垂直的直线方程为y+2x-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设等比数列{an}的前n项和为Sn(n∈N*),若a1a3=8a2,且a1与a2的等差中项为12,则S5=(  )
A.496B.33C.31D.$\frac{31}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知:f(x)=x3+3ax2+bx+a2在x=-1时有极值0.
(1)求:常数a、b的值;
(2)求:f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示是一次体操比赛时七位评委对某选手打分的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和标准差分别为(  )
A.87.4,17.2B.87.4,4.147C.87,17.2D.87,4.147

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,给出了计算$1+\frac{1}{2}+\frac{1}{3}+$…$\frac{1}{12}$的一个流程图,其中判断框内应填入的条件是(  )
A.n>12B.n<12C.n<13D.n>13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某水果商场对新产苹果的总体状况做了一个评估,主要从色泽,重量,有无班痕,含糖量等几个方面评分,满10分为优质苹果,评分7分以下的苹果为普通苹果,评分4分以下为劣质苹果,不予收购.大部分苹果的评分在7~10分之间,该商场技术员对某苹果供应商的苹果随机抽取了16个苹果进行评分,以下表格记录了16个苹果的评分情况:
分数段[0,7)[7,8)[8,9)[9,10]
个数1384
(Ⅰ)现从16个苹果中随机抽取3个,求至少有1个评分不低于9分的概率;
(Ⅱ)以这16个苹果所得的样本数据来估计本年度的总体数据,若从本年度新苹果中任意选3个记X表示抽到评分不低于9分的苹果个数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.用数字0,1,2,3,4,5组成没有重复数字的三位数:
(1)其中个位数字小于十位数字的共有多少个?
(2)被5整除的数有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x2-2x+alnx有两个极值点x1,x2,且x1<x2,则(  )
A.$f({x_1})<\frac{3+2ln2}{4}$B.$f({x_1})<-\frac{1+2ln2}{4}$C.$f({x_1})>\frac{1+2ln2}{4}$D.$f({x_1})>-\frac{3+2ln2}{4}$

查看答案和解析>>

同步练习册答案