精英家教网 > 高中数学 > 题目详情
若变量x,y满足约束条件
3x-y-1≥0
3x+y-11≤0
y≥2
,则z=2x-y的最小值为(  )
A、4B、1C、0D、-1
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用数形结合即可得到z的最小值.
解答: 解:由z=2x-y,则y=2x-z,
作出不等式组对应的平面区域,如图:
平移直线y=2x-z,由图象可知当直线y=2x-z经过点A时,直线y=2x-z的截距最大,
此时z最小,
3x-y-1=0
3x+y-11=0
,得
x=2
y=5
,即A(2,5),
此时z的最小值为z=2×2-5=4-5=-1,
故选:D.
点评:本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2cosxcos(
π
6
-x)-
3
sin2x+sinxcosx.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设x∈[-
π
3
π
3
],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)是奇函数,则:
①y=|f(x)|的图象关于y轴对称;
②若函数f(x)对任意x∈R满足f(x+2)=
1-f(x)
1+f(x)
,则4是函数f(x)的一个周期;
③若logm3<logn3<0,则0<m<n<1;
④若f(x)=e|x-a|在[1,+∞)上是增函数,则a≤1.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥P-ABC中,PA垂直于底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x的图象在点A(x1,f(x1))与点B(x2,f(x2))(x1<x2<0)处的切线互相垂直,则x2-x1的最小值为(  )
A、
1
2
B、1
C、
3
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,若
a7
a5
=
9
13
,则
S13
S9
=(  )
A、1
B、
13
9
C、
9
13
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

“a,b为异面直线”是指:
①a∩b=ϕ,且a与b不平行;
②a?平面α,b?平面β,且a∩b=ϕ;
③a?平面α,b?平面β,且α∩β=ϕ;
④a?平面α,b?平面α;
⑤不存在平面α,能使a?α且b?α成立.
上述结论中,正确的是(  )
A、①④⑤正确B、①⑤正确
C、②④正确D、①③④正确

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C三点共线,O是这条直线外一点,设
OA
=
a
OB
=
b
OC
=
c
,且存在实数m,使m
a
-3
b
-
c
=
0
成立,则点A分
BC
的比为(  )
A、-
1
3
B、-
1
2
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn表示数列{an}的前n项和.
(1)若{an}为公比为q的等比数列,写出并推导Sn的计算公式;
(2)若an=2n,bn=nlog2(Sn+2),求证:
1
b1
+
1
b2
+…+
1
bn
<1.

查看答案和解析>>

同步练习册答案