精英家教网 > 高中数学 > 题目详情
等差数列{an}中,若
a7
a5
=
9
13
,则
S13
S9
=(  )
A、1
B、
13
9
C、
9
13
D、2
考点:等差数列的性质
专题:等差数列与等比数列
分析:由等差数列的求和公式和性质可得
S13
S9
=
13(a1+a13)
2
9(a1+a9)
2
=
13×2a7
2
9×2a5
2
,结合已知计算可得.
解答: 解:由等差数列的求和公式和性质可得:
S13
S9
=
13(a1+a13)
2
9(a1+a9)
2
=
13×2a7
2
9×2a5
2
=
13
9
a7
a5
=
13
9
×
9
13
=1
故选:A
点评:本题考查等差数列的性质和求和公式,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

寒假期间,我市某校学生会组织部分同学,用“10分制”随机调查“阳光花园”社区人们的幸福度,现从调查人群中随机抽取16名,如果所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶);若幸福度分数不低于8.5分,则该人的幸福度为“幸福”.
(Ⅰ)求从这16人中随机选取3人,至少有2人为“幸福”的概率;
(Ⅱ)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“幸福”的人数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两人分别参加某高校自主招生考试,能通过的概率都为
2
3
,设考试通过的人数(就甲乙而言)为X,则X的方差D(X)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(πx+
3
)+cos(πx+
π
6
)
的一个单调递减区间是(  )
A、[-
2
3
1
3
]
B、[
5
6
11
6
]
C、[
1
3
4
3
]
D、[-
1
6
5
6
]

查看答案和解析>>

科目:高中数学 来源: 题型:

若变量x,y满足约束条件
3x-y-1≥0
3x+y-11≤0
y≥2
,则z=2x-y的最小值为(  )
A、4B、1C、0D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数学之和为偶数的概率是(  )
A、
1
2
B、
1
3
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为线段A1C1的中点,则异面直线DE与B1C所成角的大小为(  )
A、15°B、30°
C、45°D、60°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,l是两条不同的直线,α,β是两个不重合的平面,给出下列命题:
①若l⊥α,m∥α,则l⊥m;            
②若m∥l,m?α,则l∥α;
③若α⊥β,m?α,l?β,则m⊥l;    
④若m⊥l,m⊥α,l⊥β,则α⊥β;
其中正确命题的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=9,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n为正整数.
(Ⅰ)证明数列{an+1}是“平方递推数列”,且数列{lg(an+1)}为等比数列;
(Ⅱ)设(Ⅰ)中“平方递推数列”的前n项积为Tn,即Tn=(a1+1)(a2+1)…(an+1),求lgTn
(Ⅲ)在(Ⅱ)的条件下,记bn=
lgTn
lg(an+1)
,求数列{bn}的前n项和Sn,并求使Sn>4026的n的最小值.

查看答案和解析>>

同步练习册答案