精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2t-2t(x2+x)+x2+2t2+1,g(x)=
1
2
f(x).
(I)证明:当t<2
2
时,g(x)在R上是增函数;
(Ⅱ)对于给定的闭区间[a,b],试说明存在实数k,当t>k时,g(x)在闭区间[a,b]上是减函数;
(Ⅲ)证明:f(x)≥
3
2

(I)证明:由题设易得g(x)=e2x-t(ex-1)+x,g'(x)=2e2x-tex+1.又2ex+e-x≥2
2
,且t<2
2

得t<2ex+e-x
tex<2e2x+1,即g'(x)=2e2x-tex+1>0.由此可知,g(x)在R上是增函数.
(II)因为g'(x)<0是g(x)为减函数的充分条件,所以只要找到实数k,使得t>k时g'(x)=2e2x-tex+1<0,即t>2ex+e-x在闭区间[a,b]上成立即可.因为y=2ex+e-x在闭区间[a,b]上连续,故在闭区间[a,b]上有最大值,设其为k,于是在t>k时,g'(x)<0在闭区间[a,b]上恒成立,即g(x)在闭区间[a,b]上为减函数.
(III)设F(t)=2t2-2(ex+x)t+e2x+x2+1,即F(t)=2(t-
ex+x
2
)2+
1
2
(ex-x)2+1

F(t)≥
1
2
(ex-x)2+1
,令H(x)=ex-x,则H'(x)=ex-1,易知H'(0)=0.当x>0时,H'(0)>0;当x<0时,H'(0)<0.故当x=0时,H(x)取最小值,H(0)=1.所以
1
2
(ex-x)2+1≥
3
2

于是对任意的x,t,都有F(t)≥
3
2
,即f(x)≥
3
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案