| A. | 60° | B. | 90° | C. | 120° | D. | 150° |
分析 由题意画出图形,设出过B的直线方程为y=kx+a,联立直线方程与椭圆方程,化为关于x的一元二次方程,由判别式等于0求得k,进一步得到直线方程,求出A的坐标,然后利用余弦定理求得∠ABF.
解答 解:如图,![]()
设过B的直线方程为y=kx+a,
联立$\left\{\begin{array}{l}{y=kx+a}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,得(a2k2+b2)x2+2a3kx+a4-a2b2=0.
由△=4a6k2-4(a2k2+b2)(a4-a2b2)=0,得$k=±\frac{c}{a}$.
由题意取k=$\frac{c}{a}$,则直线方程为y=$\frac{c}{a}x+a$,取y=0,得x=-$\frac{{a}^{2}}{c}$.
∴A($-\frac{{a}^{2}}{c},0$),
在△ABF中,${AB}^{2}={a}^{2}+\frac{{a}^{4}}{{c}^{2}}=\frac{{a}^{2}{c}^{2}+{a}^{4}}{{c}^{2}}$,BF2=a2+c2,
$A{F}^{2}=(c+\frac{{a}^{2}}{c})^{2}=\frac{{c}^{4}+2{a}^{2}{c}^{2}+{a}^{4}}{{c}^{2}}$,
∴cos∠ABF=$\frac{A{B}^{2}+B{F}^{2}-A{F}^{2}}{2•\frac{a}{c}•\sqrt{{a}^{2}+{c}^{2}}•\sqrt{{a}^{2}+{c}^{2}}}$=$\frac{\frac{{a}^{2}{c}^{2}+{a}^{4}}{{c}^{2}}+{a}^{2}+{c}^{2}-\frac{{c}^{4}+2{a}^{2}{c}^{2}+{a}^{4}}{{c}^{2}}}{\frac{2{a}^{3}+2a{c}^{2}}{c}}$=0.
∴∠ABF=90°.
故选:B.
点评 本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,考查余弦定理的应用,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①和②均为真命题 | B. | ①和②均为假命题 | ||
| C. | ①为真命题,②为假命题 | D. | ①为假命题,②为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x=$\frac{π}{6}$ | B. | x=$\frac{π}{3}$ | C. | x=$\frac{π}{12}$ | D. | x=$\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=±\frac{{2\sqrt{3}}}{3}x$ | B. | $y=±\frac{{\sqrt{3}}}{2}x$ | C. | $y=±\frac{{\sqrt{5}}}{2}x$ | D. | $y=±\frac{{2\sqrt{5}}}{5}x$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | {0} | C. | [0,1] | D. | (-∞,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com