精英家教网 > 高中数学 > 题目详情
若函数y=f (x)( x∈R) 满足f (x+2)=f (x),且x∈(-1,1]时,f (x)=|x|,则log3|x|-f (x)=0实根个数为(  )
分析:令g(x)=log3|x|,则求log3|x|-f (x)=0实根个数,可转化为函数f (x)=|x|的图象与函数y=log3丨x丨的图象的交点个数.
解答:解:由题意,∵f(x+2)=f(x),∴函数周期为2
令g(x)=log3|x|,则求log3|x|-f (x)=0实根个数,可转化为函数f (x)=|x|的图象与函数y=log3丨x丨的图象的交点个数
由x∈(-1,1]时,f (x)=|x|,∴f (x)≤1,
∵x=1时,y=0;x=2时,y=log3丨x丨<1;x=3时,y=1
∴x>0时,函数f (x)=|x|的图象与函数y=log3丨x丨的图象的交点有2个;
由对称性得到负半轴有2个,故一共4个
故选C.
点评:本题考查方程根的个数,解题的关键是转化为图象的交点的个数,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=f(x)的定义域是[0,2],则函数y=f(x+1)+f(x-1)的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x-1)的定义域为(1,2],则函数y=f(
1x
)的定义域为
{x|x≥1}
{x|x≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)满足f′(x)>f(x),则f(2012)与e2012f(0)的大小关系为
f(2012)>e2012f(0)
f(2012)>e2012f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f'(x)的图象关于直线x=-
1
2
对称,且f′(1)=0.
(Ⅰ)求实数a,b的值;
(Ⅱ)若对于任意实数x,
1
6
f′(x)+m>0
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(2a-1)x-alnx,g(x)=-
4x
-alnx
(a∈R).
(1)a<0时,求f(x)的极小值;
(2)若函数y=f(x)与y=g(x)的图象在x∈[1,3]上有两个不同的交点M,N,求a的取值范围.

查看答案和解析>>

同步练习册答案