【题目】在
中,
所对的边分别为
,且
.
(1)求角
的大小;
(2)若
,
,
为
的中点,求
的长.
【答案】(1)
;(2)
.
【解析】试题分析:(1)由已知,利用正弦定理可得
a2=
b2+
c2-2b,再利用余弦定理即可得出cosA,结合A的范围即可得解A的值.
(2)△ABC中,先由正弦定理求得AC的值,再由余弦定理求得AB的值,△ABD中,由余弦定理求得BD的值.
试题解析:
(1)因为
asin A=(
b-c)sin B+(
c-b)·sin C,
由正弦定理得
a2=(
b-c)b+(
c-b)c,
整理得
a2=
b2+
c2-2bc,
由余弦定理得cos A=
=
=
,
因为A∈(0,π),所以A=
.
(2)由cos B=
,得sin B=
=
=
,
所以cos C=cos[π-(A+B)]=-cos(A+B)=-
=-
,
由正弦定理得b=
=
=2,
所以CD=
AC=1,
在△BCD中,由余弦定理得BD2=(
)2+12-2×1×
×
=13,
所以BD=
.
科目:高中数学 来源: 题型:
【题目】某市高中全体学生参加某项测评,按得分评为
两类(评定标准见表1).根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为
的学生中有40%是男生,等级为
的学生中有一半是女生.等级为
和
的学生统称为
类学生,等级为
和
的学生统称为
类学生.整理这10000名学生的得分数据,得到如图2所示的频率分布直方图,
类别 | 得分( | |
|
|
|
|
| |
|
|
|
|
| |
表1
![]()
(I)已知该市高中学生共20万人,试估计在该项测评中被评为
类学生的人数;
(Ⅱ)某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名
类学生”的概率;
(Ⅲ)在这10000名学生中,男生占总数的比例为51%,
类女生占女生总数的比例为
,
类男生占男生总数的比例为
,判断
与
的大小.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
:
的离心率为
,过其右焦点
与长轴垂直的直线与椭圆在第一象限相交于点
,
.
(1)求椭圆
的标准方程;
(2)设椭圆
的左顶点为
,右顶点为
,点
是椭圆上的动点,且点
与点
,
不重合,直线
与直线
相交于点
,直线
与直线
相交于点
,求证:以线段
为直径的圆恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,
轴正半轴为极轴,建立极坐标系,点
的极坐标为
,直线
的极坐标方程为
,且
过点
,曲线
的参考方程为
(
为参数).
(1)求曲线
上的点到直线
的距离的最大值与最小值;
(2)过点
与直线
平行的直线
与曲
线交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),在以原点
为极点,
轴正半轴为极轴的极坐标系中,圆
的方程为
.
(1)写出直线
的普通方程和圆
的直角坐标方程;
(2)设点
,直线
与圆
相交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是边长为
的正方形,
平面
,
,
,
与平面
所成角为
.
(Ⅰ)求证:
平面
.
(Ⅱ)求二面角
的余弦值.
(Ⅲ)设点
是线段
上一个动点,试确定点
的位置,使得
平面
,并证明你的结论.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com