9£®ÒÑÖªÊýÁÐ{cn}µÄǰnÏîºÍΪSn£¬Âú×ã2Sn=n£¨cn+2£©£®
£¨1£©Çóc1µÄÖµ£¬²¢Ö¤Ã÷ÊýÁÐ{cn}ÊǵȲîÊýÁУ»
£¨2£©Èô${a_n}=\frac{c_n}{2^n}$£¬ÇÒÊýÁÐ{an}µÄ×î´óÏîΪ$\frac{5}{4}$£®
¢ÙÇóÊýÁÐ{an}µÄͨÏʽ£»
¢ÚÈô´æÔÚÕýÕûÊýx£¬Ê¹am£¬an£¬xak³ÉµÈ²îÊýÁУ¨m£¼n£¼k£¬m£¬n£¬k¡ÊN*£©£¬Ôòµ±T£¨x£©=am+an+xakÈ¡µÃ×î´óֵʱ£¬ÇóxµÄ×îСֵ£®

·ÖÎö £¨1£©2Sn=n£¨cn+2£©£¬2S1=2c1=c1+2£¬½âµÃc1=2£¬n¡Ý2ʱ£¬2cn=2Sn-2Sn-1£®»¯Îª£º£¨n-2£©cn-£¨n-1£©cn-1+2=0£®¿ÉµÃ£¨n-1£©cn+1-ncn+2=0£¬Ïà¼õ¿ÉµÃ£º2cn=cn+1+cn-1£®¼´¿ÉÖ¤Ã÷£®
£¨2£©¢ÙÉèÊýÁÐ{cn}µÄ¹«²îΪd£¬Ôòan=$\frac{£¨n-1£©d+2}{{2}^{n}}$£®¶Ôd·ÖÀàÌÖÂÛ£¬d¡Ü0ʱÉáÈ¥£¬d£¾0£¬an+1-an=$\frac{-£¨n-2£©d-2}{{2}^{n}}$£¼0£¬ÔÚn¡Ý2ʱºã³ÉÁ¢£¬¿ÉµÃa2Ϊ×î´óÖµ£®ÓÉa2=$\frac{d+2}{{2}^{2}}$=$\frac{5}{4}$£¬½âµÃd£®¿ÉµÃan£®
¢Ú´æÔÚÕýÕûÊýx£¬Ê¹am£¬an£¬xak³ÉµÈ²îÊýÁУ¨m£¼n£¼k£¬m£¬n£¬k¡ÊN*£©£¬¿ÉµÃ2an=am+xak£¬T£¨x£©=am+an+xak=3an£¬ÓÉ¢Ù¿ÉÖª£ºa2×î´ó£¬Ê×ÏÈ¿¼²ìa2£®´Ëʱxak=2a2-a1£®¼´$x•\frac{3k-1}{{2}^{k}}$=$\frac{3}{2}$£¬½âµÃx=$\frac{3¡Á{2}^{k-1}}{3k-1}$£¨k¡Ý3£©£®ÀûÓÃÆäµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ß2Sn=n£¨cn+2£©£¬¡à2S1=2c1=c1+2£¬½âµÃc1=2£¬
n¡Ý2ʱ£¬2cn=2Sn-2Sn-1=n£¨cn+2£©-£¨n-1£©£¨cn-1+2£©£®»¯Îª£º£¨n-2£©cn-£¨n-1£©cn-1+2=0£®
¡à£¨n-1£©cn+1-ncn+2=0£¬Ïà¼õ¿ÉµÃ£º2cn=cn+1+cn-1£®
¡àÊýÁÐ{cn}ÊǵȲîÊýÁУ¬Ê×ÏîΪ2£®
£¨2£©¢ÙÉèÊýÁÐ{cn}µÄ¹«²îΪd£¬Ôòan=$\frac{£¨n-1£©d+2}{{2}^{n}}$£®
Èôd¡Ü0£¬Ôòan=$\frac{£¨n-1£©d+2}{{2}^{n}}$¡Üa1=1£¬ÓëÒÑÖªÊýÁÐ{an}µÄ×î´óÏîΪ$\frac{5}{4}$ì¶Ü£®
Èôd£¾0£¬an+1-an=$\frac{nd+2}{{2}^{n+1}}$-$\frac{£¨n-1£©d+2}{{2}^{n}}$=$\frac{-£¨n-2£©d-2}{{2}^{n}}$£¼0£¬ÔÚn¡Ý2ʱºã³ÉÁ¢£¬¿ÉµÃa2Ϊ×î´óÖµ£®
ÓÉa2=$\frac{d+2}{{2}^{2}}$=$\frac{5}{4}$£¬½âµÃd=3£®
¡àan=$\frac{3n-1}{{2}^{n}}$£®
¢Ú¡ß´æÔÚÕýÕûÊýx£¬Ê¹am£¬an£¬xak³ÉµÈ²îÊýÁУ¨m£¼n£¼k£¬m£¬n£¬k¡ÊN*£©£¬
¡à2an=am+xak£¬
T£¨x£©=am+an+xak=3an£¬ÓÉ¢Ù¿ÉÖª£ºa2×î´ó£¬Ê×ÏÈ¿¼²ìa2£®
´Ëʱxak=2a2-a1=$2¡Á\frac{5}{4}$-1=$\frac{3}{2}$£®¼´$x•\frac{3k-1}{{2}^{k}}$=$\frac{3}{2}$£¬½âµÃx=$\frac{3¡Á{2}^{k-1}}{3k-1}$£¨k¡Ý3£©£®
¿¼²ì3k-1=8£¬11£¬14£¬17£¬¡­£®
µ±k=11ʱ£¬xÈ¡µÃ×îСֵ£¬x=$\frac{3¡Á{2}^{10}}{32}$=96¡ÊN*£®
¡àµ±T£¨x£©=am+an+xakÈ¡µÃ×î´óֵʱ£¬xµÄ×îСֵΪ96£®

µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁеÄͨÏʽ¼°ÆäÐÔÖÊ¡¢·ÖÀàÌÖÂÛ·½·¨¡¢ÊýÁеĵÝÍÆ¹ØÏµ¡¢µ¥µ÷ÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÊýÁÐ{an}µÄͨÏʽan=2n£¬ÈôÊýÁÐ{bn}Âú×㣺${a_n}=\frac{b_1}{3+1}+\frac{b_2}{{{3^2}+1}}+\frac{b_3}{{{3^3}+1}}+¡­+\frac{b_n}{{{3^n}+1}}$
£¨1£©ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©Áî${c_n}=\frac{{{a_n}{b_n}}}{4}$£¨n¡ÊN*£©£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒԵ㣨0£¬1£©ÎªÔ²ÐÄÇÒÓëÖ±Ïßmx-y-2m-1=0£¨x¡ÊR£©ÏàÇеÄËùÓÐÔ²ÖУ¬°ë¾¶×î´óµÄÔ²µÄ±ê×¼·½³ÌΪx2+£¨y-1£©2=8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Éèf£¨x£©ÊÇRÉÏµÄÆæº¯Êý£¬µ±x¡Ü0ʱ£¬f£¨x£©=x2+£¨3a-1£©x£¬Èôº¯Êýy=f£¨x£©-|ex-1|ÓÐÁ½¸öÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ$£¨0£¬\frac{2}{3}]$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èôa£¬b¡Ê{0£¬1£¬2}£¬Ôòº¯Êýf£¨x£©=ax2+2x+bÓÐÁãµãµÄ¸ÅÂÊΪ$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖª¦ÈΪÈñ½Ç£¬ÇÒ$sin£¨{¦È-\frac{¦Ð}{4}}£©=\frac{{\sqrt{2}}}{10}$£¬Ôòsin2¦È=$\frac{24}{25}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¸ø³öÏÂÁÐÈý¸ö½áÂÛ£º
¢ÙÉè»Ø¹éÖ±Ïß·½³ÌΪ$\widehat{y}$=2-2.5x£¬µ±±äÁ¿xÔö¼Ó1¸öµ¥Î»Ê±£¬yƽ¾ùÔö¼Ó2¸öµ¥Î»£»
¢ÚÈôÃüÌâp£º?x0¡Ê[1£¬+¡Þ£©£¬$x_0^2-{x_0}-1£¼0$£¬Ôò©Vp£º?x¡Ê£¨-¡Þ£¬1£©£¬x2-x-1¡Ý0£»
¢ÛÒÑÖªÖ±Ïßl1£ºax+3y-1=0£¬l2£ºx+by+1=0£¬Ôòl1¡Íl2µÄ³äÒªÌõ¼þÊÇ$\frac{a}{b}=-3$£»
ÆäÖÐÕýÈ·½áÂ۵ĸöÊýΪ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄ¸÷ÏîΪÕýÊý£¬ÇÒ 9a32=a2a6£¬a3=2a2+9£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©Éèbn=log3a1+log3a2+¡­+log3an£¬ÇóÊýÁÐ$\left\{{\frac{1}{b_n}}\right\}$µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®»¯¼ò£º$\frac{{2cos£¨{\frac{¦Ð}{2}-¦Á}£©+sin£¨{¦Ð-2¦Á}£©}}{{2co{s^2}\frac{¦Á}{2}}}$=2sin¦Á£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸