精英家教网 > 高中数学 > 题目详情
14.已知θ为锐角,且$sin({θ-\frac{π}{4}})=\frac{{\sqrt{2}}}{10}$,则sin2θ=$\frac{24}{25}$.

分析 由题意利用同角三角函数的基本关系,二倍角公式、诱导公式,求得sin2θ的值.

解答 解:∵θ为锐角,且$sin({θ-\frac{π}{4}})=\frac{{\sqrt{2}}}{10}$,∴$θ-\frac{π}{4}$也是锐角,∴cos(θ-$\frac{π}{4}$)=$\sqrt{{1-sin}^{2}(θ-\frac{π}{4})}$=$\frac{7\sqrt{2}}{10}$,
则sin2θ=cos(2θ-$\frac{π}{2}$)=2${cos}^{2}(θ-\frac{π}{4})$-1=$\frac{24}{25}$,
故答案为:$\frac{24}{25}$.

点评 本题主要考查同角三角函数的基本关系,二倍角公式、诱导公式,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知复数z=$\frac{3-i}{1+i}$(i是虚数单位),则z的实部是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知关于x的不等式|x+a|<b的解集为{x|2<x<4}.
(1)求实数a,b的值;
(2)求证:$2≤\sqrt{at+12}+\sqrt{bt}≤4$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知(2-i)(m+2i)=10,i是虚数单位,则实数m的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{cn}的前n项和为Sn,满足2Sn=n(cn+2).
(1)求c1的值,并证明数列{cn}是等差数列;
(2)若${a_n}=\frac{c_n}{2^n}$,且数列{an}的最大项为$\frac{5}{4}$.
①求数列{an}的通项公式;
②若存在正整数x,使am,an,xak成等差数列(m<n<k,m,n,k∈N*),则当T(x)=am+an+xak取得最大值时,求x的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx+$\frac{1}{x}+1,g(x)=x+\frac{1}{x}({x>0})$.
(1)求证函数f(x)与g(x)有相同的极值,并求出这个极值;
(2)函数h(x)=f(x)-ag(x)有两个极值点x1,x2(x1<x2),若h(x1)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)的定义域为R且满足-f(x)=f(-x),f(x)=f(2-x),则$f({log_2}4+{log_4}8+{log_8}16-{e^{ln\frac{5}{6}}})$=(  )
A.1B.-1C.$\frac{3}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,已知角A、B、C的对边分别为a、b、c,a=7,b=3,c=5,求△ABC的最大内角与sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=2sinx-cosx在x0处取得最大值,则cosx0=(  )
A.$-\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{5}$C.$-\frac{{2\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

同步练习册答案