精英家教网 > 高中数学 > 题目详情
已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)过点P(3,1),其左、右焦点分别为F1,F2,且
F1P
F2P
=-6

(1)求椭圆E的方程;
(2)若M,N是直线x=5上的两个动点,且F1M⊥F2N,则以MN为直径的圆C是否过定点?请说明理由.
分析:(1)根据题意分别写出
F1P
F2P
,所以
F1P
F2P
=(3+c)(3-c)+1=10-c2=-6
,解得c=4,再结合椭圆的定义可得a得数值,进而得到椭圆E的方程.    
(2)设M,N的坐标分别为(5,m),(5,n),则得到
F1M
F2N
,所以
F1M
F2N
=9+mn=0
,即mn=-9,并且得到圆C的方程为(x-5)2+(y-
m+n
2
)2=(
|m-n|
2
)2
,化简可得(x-5)2+y2-(m+n)y-9=0,令y=0,可得x=8或2,即可得到答案.
解答:解:(1)设点F1,F2的坐标分别为(-c,0),(c,0)(c>0),
F1P
=(3+c,1),
F2P
=(3-c,1)

F1P
F2P
=(3+c)(3-c)+1=10-c2=-6

解得c=4,
所以2a=|PF1|+|PF2|=
(3+4)2+12
+
(3-4)2+12
=6
2

所以a=3
2
b2=a2-c2=18-16=2

所以椭圆E的方程为
x2
18
+
y2
2
=1
.     
(2)设M,N的坐标分别为(5,m),(5,n),则
F1M
=(9,m),
F2N
=(1,n)

因为
F1M
F2N

所以
F1M
F2N
=9+mn=0
,即mn=-9,
又因为圆C的圆心为(5,
m+n
2
)
,半径为
|m-n|
2

所以圆C的方程为(x-5)2+(y-
m+n
2
)2=(
|m-n|
2
)2

即(x-5)2+y2-(m+n)y+mn=0,即(x-5)2+y2-(m+n)y-9=0,
令y=0,可得x=8或2,
所以圆C必过定点(8,0)和(2,0).
点评:此题是个中档题.考查椭圆的定义和标准方程的求法,以及圆与椭圆的综合等知识,同时考查了学生分析问题与解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0),焦点为F1、F2,双曲线G:x2-y2=m(m>0)的顶点是该椭圆的焦点,设P是双曲线G上异于顶点的任一点,直线PF1、PF2与椭圆的交点分别为A、B和C、D,已知三角形ABF2的周长等于8
2
,椭圆四个顶点组成的菱形的面积为8
2

(1)求椭圆E与双曲线G的方程;
(2)设直线PF1、PF2的斜率分别为k1和k2,探求k1和k2的关系;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,试求出λ的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0),以F1(-c,0)为圆心,以a-c为半径作圆F1,过点B2(0,b)作圆F1的两条切线,设切点为M、N.
(1)若过两个切点M、N的直线恰好经过点B1(0,-b)时,求此椭圆的离心率;
(2)若直线MN的斜率为-1,且原点到直线MN的距离为4(
2
-1),求此时的椭圆方程;
(3)是否存在椭圆E,使得直线MN的斜率k在区间(-
2
2
,-
3
3
)内取值?若存在,求出椭圆E的离心率e的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
3
=1
(a
3
)的离心率e=
1
2
.直线x=t(t>0)与曲线 E交于不同的两点M,N,以线段MN 为直径作圆 C,圆心为 C.
 (1)求椭圆E的方程;
 (2)若圆C与y轴相交于不同的两点A,B,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的一个交点为F1(-
3
,0)
,而且过点H(
3
1
2
)

(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+y2=1
(a>1)的离心率e=
3
2
,直线x=2t(t>0)与椭圆E交于不同的两点M、N,以线段MN为直径作圆C,圆心为C
(Ⅰ)求椭圆E的方程;
(Ⅱ)当圆C与y轴相切的时候,求t的值;
(Ⅲ)若O为坐标原点,求△OMN面积的最大值.

查看答案和解析>>

同步练习册答案