精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3x+1-13x-1
,函数g(x)=2-f(-x).
(Ⅰ)判断函数g(x)的奇偶性;
(Ⅱ)若当x∈(-1,0)时,g(x)<tf(x)恒成立,求实数t的最大值.
分析:(Ⅰ)利用函数奇偶性的定义,判断函数g(x)的奇偶性;
(Ⅱ)利用函数的单调性求函数的最值即可.
解答:解:(Ⅰ)因为f(x)=
3x+1-1
3x-1
,函数g(x)=2-f(-x).
所以g(x)=2-
3-x+1-1
3-x-1
=2-
3-3x
1-3x
=
3x+1
3x-1
,定义域为{x|x≠0}关于原点对称,
因为g(-x)=
3-x+1
3-x-1
=
1+3x
1-3x
=-
3x+1
3x-1
=-g(x)

所以g(x)是奇函数.
(Ⅱ)由g(x)<tf(x)得,
3x+1
3x-1
<t•
3x+1-1
3x-1
,(*)
 当x∈(-1,0)时,
1
3
3x<1
-
2
3
3x-1<0

(*)式化为3x+1>t(3x+1-1),(**) …(9分)
设3x=u,u∈(
1
3
,1)
,则(**) 式化为  (3t-1)u-t-1<0,…(11分)
再设h(u)=(3t-1)u-t-1,
则g(x)<tf(x)恒成立等价于
h(
1
3
)≤0
h(1)≤0
(3t-1)•
1
3
-t-1≤0
(3t-1)•1-t-1≤0
t∈R
t≤1

解得t≤1,故实数t的最大值为1.…(14分)
点评:本题主要考查函数奇偶性的判断,以及利用指数函数的性质求含参问题恒成立问题,综合性较强,考查学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
,若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的图象过点(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)该函数的图象可由函数y=
2
sin4x(x∈R)
的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|3-
1x
|,x∈(0,+∞)

(1)写出f(x)的单调区间;
(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x-
π
3
)=sinx,则f(π)
等于(  )

查看答案和解析>>

同步练习册答案