精英家教网 > 高中数学 > 题目详情
已知椭圆C:+=1 (a>b>0)以双曲线的焦点为顶点,其离心率与双曲线的离心率互为倒数.
(1)求椭圆C的方程;
(2)若椭圆C的左、右顶点分别为点A,B,点M是椭圆C上异于A,B的任意一点.
①求证:直线MA,MB的斜率之积为定值;
②若直线MA,MB与直线x=4分别交于点P,Q,求线段PQ长度的最小值.
【答案】分析:(1)利用椭圆、双曲线的标准方程及其性质即可得出;
(2)①利用点在椭圆上、斜率计算公式即可证明;
②利用①的结论、斜率计算公式、基本不等式的性质即可求出.
解答:解:(1)易知双曲线的焦点为(-2,0),(2,0),离心率为
则在椭圆C中a=2,e=,故在椭圆C中c=,b=1,∴椭圆C的方程为
(2)①设M(x,y)(x≠±2),由题易知A(-2,0),B(2,0),则kMA=,kMB=
∴kMA•kMB==
∵点M在椭圆C上,∴,即=-,故kMA•kMB=,即直线MA,MB的斜率之积为定值.    
②设P(4,y1),Q(4,y2),则kMA=kPA=,kMB=kBQ=
由①得,即y1y2=-3,当y1>0,y2<0时,|PQ|=|y1-y2|≥2=2,当且仅当y1=,y2=-时等号成立.
同理,当y1<0,y2>0时,当且仅当y1=-,y2=时,|PQ|有最小值2
点评:数列掌握圆锥曲线的定义、标准方程及其性质、斜率计算公式、基本不等式的性质是解题的关键.善于利用已经证明的结论是常用的方法之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:+y2=1,则与椭圆C关于直线y=x成轴对称的曲线的方程是____________.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高考数学压轴卷(解析版) 题型:选择题

已知椭圆C:+=1(a>b>0)的左右焦点为F1,F2,过F2线与圆x2+y2=b2相切于点A,并与椭圆C交与不同的两点P,Q,如图,PF1⊥PQ,若A为线段PQ的靠近P的三等分点,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西桂林市、崇左市、防城港市高考第一次联合模拟理科数学试卷(解析版) 题型:解答题

 如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F、F,A是椭圆C上的一点,AF⊥FF,O是坐标原点,OB垂直AF于B,且OF=3OB.

(Ⅰ)求椭圆C的离心率;

(Ⅱ)求t∈(0,b),使得命题“设圆x+y=t上任意点M(x,y)处的切线交椭圆C于Q、Q两点,那么OQ⊥OQ”成立.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省攀枝花市高三12月月考文科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,且在x轴上的顶点分别为

(1)求椭圆方程;

(2)若直线轴交于点T,P为上异于T的任一点,直线分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三上学期摸底考试文科数学 题型:解答题

(本题满分14分)已知椭圆C:=1(a>b>0)的离心率为,短轴一

 

个端点到右焦点的距离为3.

(1)求椭圆C的方程;

(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

 

 

 

查看答案和解析>>

同步练习册答案