精英家教网 > 高中数学 > 题目详情
20.已知数列{an}的前n项和为An,nan+1=An+$\frac{3}{2}$n(n+1),a1=2;等比数列{bn}的前n项和为Bn,Bn+1、Bn、Bn+2成等差数列,b1=-2.
(1)求数列{an}、{bn}的通项公式;
(2)求数列{an•bn}的前n项和Sn

分析 (1)利用递推关系可得:$\frac{{{A_{n+1}}}}{n+1}=\frac{A_n}{n}+\frac{3}{2}$,再利用等差数列的通项公式可得:An,再利用递推关系可得an
利用等差数列与底边数列的通项公式即可得出bn
(2)由(1),${a_n}•{b_n}=({3n-1}){({-2})^n}$,利用“错位相减法”、等比数列的求和公式即可得出.

解答 解:(1)∵$n{a_{n+1}}={A_n}+\frac{3}{2}n({n+1})$,∴$n({{A_{n+1}}-{A_n}})={A_n}+\frac{3}{2}n({n+1})$,
∴$n{A_{n+1}}=({n+1}){A_n}+\frac{3}{2}n({n+1})$,
∴$\frac{{{A_{n+1}}}}{n+1}=\frac{A_n}{n}+\frac{3}{2}$,
∵a1=2,∴$\frac{A_1}{1}=2$,
∴$\frac{A_n}{n}=2+({n-1})\frac{3}{2}$,∴${A_n}=\frac{{n({3n+1})}}{2}$,
∴n≥2时,an=An-An-1=3n-1;n=1时,a1=2.
综上,an=3n-1,
设数列{bn}的公比为q,∵Bn+1、Bn、Bn+2成等差数列,
∴2Bn=Bn-1+Bn+2
即2Bn=Bn+bn-1+Bn+bn+1+bn+2,∴-2bn+1=bn+2,∴q=-2,
∵b1=-2,∴${b_n}={({-2})^n}$.
(2)由(1),${a_n}•{b_n}=({3n-1}){({-2})^n}$,
则Sn=2×(-2)+5×(-2)2+8×(-2)3+…+(3n-1)•(-2)n
-2Sn=2×(-2)2+5×(-2)3+…+(3n-4)•(-2)n+(3n-1)•(-2)n+1
作差得:3Sn=-4+3[(-2)2+(-2)3+…+(-2)n]-(3n-1)•(-2)n+1
=2+3×$\frac{-2×[1-(-2)^{n}]}{1-(-2)}$-(3n-1)•(-2)n+1
∴${S_n}=-n{({-2})^{n+1}}$.

点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设数列{an}的前n项和为Sn,关于数列{an}有下列四个结论:
①若数列{an}既是等差数列又是等比数列,则Sn=na1
②若Sn=2n-1,则数列{an}是等比数列;
③若Sn=an2+bn(a,b∈R),则数列{an}是等差数列;
④若Sn=an(a∈R),则数列{an}既是等差数列又是等比数列.
其中正确结论的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\sqrt{x+1}$+lg(3-2x)的定义域为[-1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆$\frac{x^2}{16}$+$\frac{y^2}{8}$=1的一点M到椭圆的一个焦点的距离等于4,那么点M到椭圆的另一个焦点的距离等于(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示的平面区域所对应的不等式组是(  )
A.$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≥0}\\{2x-y-2≤0}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≥0}\\{2x-y-2≥0}\end{array}}\right.$
C.$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≤0}\\{2x-y-2≤0}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≤0}\\{2x-y-2≥0}\end{array}}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,使用纸板可以折叠粘贴制作一个形状为正六棱柱形状的花型锁盒盖的纸盒.
(1)求该纸盒的容积;
(2)如果有一张长为60cm,宽为40cm的矩形纸板,则利用这张纸板最多可以制作多少个这样的纸盒(纸盒必须用一张纸板制成).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若二次函数f(x)=(m-1)x2+2mx+3是定义在[-3a,4-a]上的偶函数,则f(x)的值域为[-6,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知tanx=3,则$\frac{sinx+3cosx}{2sinx-3cosx}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知定义在R上的函数f(x)=|x-m|+|x|,m∈N*,存在实数x使f(x)<2成立.
(1)求实数m的值;
(2)若α,β>1,f(α)+f(β)=4,求证:$\frac{4}{α}+\frac{1}{β}>3$.

查看答案和解析>>

同步练习册答案