精英家教网 > 高中数学 > 题目详情
7.已知tanx=3,则$\frac{sinx+3cosx}{2sinx-3cosx}$=2.

分析 原式分子分母除以cosx,利用同角三角函数间的基本关系化简,将tanx的值代入计算即可求出值.

解答 解:∵tanx=3,
∴原式=$\frac{tanx+3}{2tanx-3}$=$\frac{3+3}{2×3-3}$=2.
故答案是:2.

点评 此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知关于x的方程x2-alnx-ax=0有唯一解,则实数a的取值范围为(-∞,0)∪{1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为An,nan+1=An+$\frac{3}{2}$n(n+1),a1=2;等比数列{bn}的前n项和为Bn,Bn+1、Bn、Bn+2成等差数列,b1=-2.
(1)求数列{an}、{bn}的通项公式;
(2)求数列{an•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在等比数列{an}中,Sn=3n-1,求{an}的公比q和通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知x>0,y>0,lg2x+lg8y=lg4,则$\frac{1}{x}+\frac{1}{3y}$的最小值为(  )
A.2B.$2\sqrt{2}$C.4D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.i3=(  )
A.-iB.iC.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=1-$\frac{1}{cosx}$的定义域是{x∈R|x≠kπ+$\frac{π}{2}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{lg|x-2|,x≠2}\\{4,x=2}\end{array}\right.$,则关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解xi(i=1,2,3,4,5),则f(x1+x2+x3+x4+x5+2)=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)=x4+ax3+bx2+cx+d,其中a、b、c、d为常数.如果f(1)=10,f(2)=20,f(3)=30,那么,$\frac{1}{4}$[f(4)+f(0)]的值是(  )
A.1B.4C.7D.16

查看答案和解析>>

同步练习册答案