精英家教网 > 高中数学 > 题目详情
16.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{lg|x-2|,x≠2}\\{4,x=2}\end{array}\right.$,则关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解xi(i=1,2,3,4,5),则f(x1+x2+x3+x4+x5+2)=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.2D.1

分析 画出f(x)的图象,由图象可知,令f(x)=t,则t2+bt+c=0有两个不等的实数根,且其中一个为2,由于lg|x-2|的图象关于直线x=2对称,且其中一个解为2,即有x1+x2+x3+x4+x5=10,再由对数的运算性质即可得到答案.

解答 解:画出f(x)的图象,
由于关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解,令f(x)=t,则t2+bt+c=0有两个不等的实数根,
且其中一个为2,
画出直线y=m(m≠2),
得到5个交点,其横坐标为x1,x2,x3,x4,x5
设x3=2,
且x1<x2<x3<x4<x5
由于y=lg|x-2|的图象关于直线x=2对称,
则x1+x5=x2+x4=4,
即有x1+x2+x3+x4+x5=10,
则f(x1+x2+x3+x4+x5+2)=f(12)=lg10=1,
故选:D

点评 本题考查分段函数及运用,考查函数的对称性,以及数形结合的思想方法,同时考查对数的运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知椭圆$\frac{x^2}{16}$+$\frac{y^2}{8}$=1的一点M到椭圆的一个焦点的距离等于4,那么点M到椭圆的另一个焦点的距离等于(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知tanx=3,则$\frac{sinx+3cosx}{2sinx-3cosx}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若(a+x)(1-x)4的展开式的奇次项系数和为48,则实数a之值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=4cosωx•sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求f(x)在区间[-$\frac{π}{2}$,0]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.集合A={x|x2-2x>0},B={y|y=2x,x>0},R是实数集,则(∁RA)∪B等于(  )
A.[1,2]B.(1,+∞)C.(1,2]D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知定义在R上的函数f(x)=|x-m|+|x|,m∈N*,存在实数x使f(x)<2成立.
(1)求实数m的值;
(2)若α,β>1,f(α)+f(β)=4,求证:$\frac{4}{α}+\frac{1}{β}>3$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\frac{2x-1}{x+3}$(x∈(-5,-4)∪(2,5)),则f(x)的值域是(-5,-1.5)∪($\frac{9}{8}$,$\frac{15}{11}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若3x=a,5x=b,则45x等于(  )
A.a2bB.ab2C.a2+bD.a2+b2

查看答案和解析>>

同步练习册答案