| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | 2 | D. | 1 |
分析 画出f(x)的图象,由图象可知,令f(x)=t,则t2+bt+c=0有两个不等的实数根,且其中一个为2,由于lg|x-2|的图象关于直线x=2对称,且其中一个解为2,即有x1+x2+x3+x4+x5=10,再由对数的运算性质即可得到答案.
解答
解:画出f(x)的图象,
由于关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解,令f(x)=t,则t2+bt+c=0有两个不等的实数根,
且其中一个为2,
画出直线y=m(m≠2),
得到5个交点,其横坐标为x1,x2,x3,x4,x5,
设x3=2,
且x1<x2<x3<x4<x5,
由于y=lg|x-2|的图象关于直线x=2对称,
则x1+x5=x2+x4=4,
即有x1+x2+x3+x4+x5=10,
则f(x1+x2+x3+x4+x5+2)=f(12)=lg10=1,
故选:D
点评 本题考查分段函数及运用,考查函数的对称性,以及数形结合的思想方法,同时考查对数的运算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,2] | B. | (1,+∞) | C. | (1,2] | D. | [0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com