精英家教网 > 高中数学 > 题目详情
4.若(a+x)(1-x)4的展开式的奇次项系数和为48,则实数a之值为-5.

分析 给展开式中的x分别赋值1和-1,可得两个等式,两式相减,得出奇次项系数和,再列方程求出a的值.

解答 解:设f(x)=(a+x)(1-x)4=a0+a1x+a2x2+…+a5x5
令x=1,则a0+a1+a2+…+a5=f(1)=0,①
令x=-1,则a0-a1+a2-…+a4-a5=f(-1)=16(a-1);②
①-②得,2(a1+a3+a5)=-16(a-1)=2×48,
解得a=-5.
故答案为:-5.

点评 本题考查就二项式展开式的系数和问题,应先设出展开式,再用赋值法代入特殊值,相加或相减即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知数列 {an}中,a1=1,a2=4,2an=an-1+an+1(n≥2,n∈N*),当an=298时,序号n=(  )
A.100B.99C.96D.101

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在等比数列{an}中,Sn=3n-1,求{an}的公比q和通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.i3=(  )
A.-iB.iC.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=1-$\frac{1}{cosx}$的定义域是{x∈R|x≠kπ+$\frac{π}{2}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在棱长为2 的正方体ABCD-A1B1C1D1中,P是体对角线BD1的中点,Q在棱CC1上运动,则|PQ|min=(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{lg|x-2|,x≠2}\\{4,x=2}\end{array}\right.$,则关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解xi(i=1,2,3,4,5),则f(x1+x2+x3+x4+x5+2)=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.$\sqrt{3}+1$与$\sqrt{3}-1$,两数的等比中项是(  )
A.1B.-1C.±1D.$±\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow a$=(cosx+sinx,2sinx),$\overrightarrow b$=(cosx-sinx,cosx).令f(x)=$\overrightarrow a$•$\overrightarrow b$.
(I)求f(x)的最小正周期;
(II)求f(x)在[${\frac{π}{4}$,$\frac{3π}{4}}$]上的单调递增区间.

查看答案和解析>>

同步练习册答案