精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=4cosωx•sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求f(x)在区间[-$\frac{π}{2}$,0]上的单调性.

分析 (1)先利用和角公式再通过二倍角公式,将次升角,化为一个角的一个三角函数的形式,通过函数的周期,求实数ω的值;
(2)由于x是[-$\frac{π}{2}$,0]范围内的角,得到2x+$\frac{π}{4}$的范围,然后通过正弦函数的单调性求出f(x)在区间[-$\frac{π}{2}$,0]上的单调性.

解答 解:(1)f(x)=4cosωx•sin(ωx+$\frac{π}{4}$)=2$\sqrt{2}$sinωx•cosωx+2$\sqrt{2}$cos2ωx=$\sqrt{2}$(sin2ωx+cos2ωx)+$\sqrt{2}$=2sin(2ωx+$\frac{π}{4}$)+$\sqrt{2}$.
因为f(x)的最小正周期为π,且ω>0,
从而有$\frac{2π}{2ω}$=π,故ω=1.
(2)由(1)知,f(x)=2sin(2x+$\frac{π}{4}$)+$\sqrt{2}$.
若-$\frac{π}{2}$≤x≤0,则-$\frac{3π}{4}$≤2x+$\frac{π}{4}$≤$\frac{π}{4}$,
当-$\frac{3π}{4}$≤2x+$\frac{π}{4}$≤-$\frac{π}{2}$,即-$\frac{π}{2}$≤x≤$-\frac{3π}{8}$时,f(x) 在[-$\frac{π}{2}$,$-\frac{3π}{8}$]上单调递减;
当-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤$\frac{π}{4}$,即$-\frac{3π}{8}$≤x≤0时f(x) 在[$-\frac{3π}{8}$,0]上单调递增.

点评 本题考查三角函数的化简求值,恒等关系的应用,注意三角函数值的变换,考查计算能力,常考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设正项数列{an}的前n项和Sn,且满足2Sn=an2+an
(1)求数列{an}的通项公式;
(2)若数列bn=$\frac{{{a_{n+1}}}}{{{a_{n+2}}}}$+$\frac{{{a_{n+2}}}}{{{a_{n+1}}}}$,数列{bn}的前n项和为Tn,求证:Tn<2n+$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知x>0,y>0,lg2x+lg8y=lg4,则$\frac{1}{x}+\frac{1}{3y}$的最小值为(  )
A.2B.$2\sqrt{2}$C.4D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=1-$\frac{1}{cosx}$的定义域是{x∈R|x≠kπ+$\frac{π}{2}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f (x)的定义域为I,若对?x∈I,都有f(x)<x,则称f(x)为τ-函数;若对?x∈I,都有f[f(x)]<x,则称f(x)为Γ一函数.给出下列命题:
①f(x)=ln(l+x)(x≠0)为τ-函数;
②f(x)=sinx (0<x<π)为Γ一函数;
③f(x)为τ-函数是(x)为Γ一函数的充分不必要条件;
④f(x)=ax2-1既是τ一函数又是Γ一函数的充要条件是a<-$\frac{1}{4}$.
其中真命题有①②④.(把你认为真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{lg|x-2|,x≠2}\\{4,x=2}\end{array}\right.$,则关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解xi(i=1,2,3,4,5),则f(x1+x2+x3+x4+x5+2)=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)=\frac{{\sqrt{1+{{log}_3}x}}}{{{2^x}-4}}$的定义域为(  )
A.$(\frac{1}{3},+∞)$B.$(\frac{1}{3},2)∪(2,+∞)$C.$[\frac{1}{3},2)∪(2,+∞)$D.$[\frac{1}{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={1,2,3},B={2,3},则(  )
A.A=BB.B∈AC.A?BD.B?A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,是偶函数且在(0,+∞)上为增函数的是(  )
A.y=cosxB.y=-x2+1C.y=log2|x|D.y=ex-e-x

查看答案和解析>>

同步练习册答案