分析 (1)利用递推关系可得(an+an-1)(an-an-1-1)=0,又数列{an}为正项数列,可得an-an-1=1.再利用等差数列的通项公式即可得出.
(2)由(1)知:${b_n}=\frac{n+1}{n+2}+\frac{n+2}{n+1}=1-\frac{1}{n+2}+1+\frac{1}{n+1}=2+\frac{1}{n+1}-\frac{1}{n+2}$,再利用“裂项求和”即可得出.
解答 解:(1)由题意可得$2{S_n}=a_n^2+{a_n},2{S_{n-1}}=a_{n-1}^2+{a_{n-1}}$,两式相减得,$2{a_n}=a_n^2-a_{n-1}^2+{a_n}+{a_{n-1}}$,
∴$a_n^2-a_{n-1}^2-{a_n}-{a_{n-1}}=0$,即(an+an-1)(an-an-1-1)=0,
又∵数列{an}为正项数列,∴an-an-1=1.因此数列{an}为等差数列.
又n=1时,$2{a_1}=a_1^2+{a_1}$,∴a1=1,an=1+n-1=n.
(2)证明:由(1)知${b_n}=\frac{n+1}{n+2}+\frac{n+2}{n+1}$,又${b_n}=\frac{n+1}{n+2}+\frac{n+2}{n+1}=1-\frac{1}{n+2}+1+\frac{1}{n+1}=2+\frac{1}{n+1}-\frac{1}{n+2}$,
∴${T_n}={b_1}+{b_2}+…+{b_n}=({2+2+…+2})+[{({\frac{1}{2}-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{4}})+…+({\frac{1}{n+1}-\frac{1}{n+2}})}]$
∴${T_n}={b_1}+{b_2}+…+{b_n}=2n+\frac{1}{2}-\frac{1}{n+2}<2n+\frac{1}{2}$.
点评 本题考查了数列递推关系、等差数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{8}$个单位长度 | B. | 向右平移$\frac{π}{8}$个单位长度 | ||
| C. | 向左平移$\frac{π}{4}$个单位长度 | D. | 向右平移$\frac{π}{4}$个单位长度 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≥0}\\{2x-y-2≤0}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≥0}\\{2x-y-2≥0}\end{array}}\right.$ | ||
| C. | $\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≤0}\\{2x-y-2≤0}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≤0}\\{2x-y-2≥0}\end{array}}\right.$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com