分析 若p为 真,则${△_1}={({-a})^2}-4({\frac{5}{4}-a})={a^2}+4a-5≤0$,解出a的范围.若q为 真,不等式x2+2x+a<0有解,△2>0,解得a范围.由命题p∨q为真,p∧q为假,可得p,q,一真一假.
解答 解:若p为 真,则${△_1}={({-a})^2}-4({\frac{5}{4}-a})={a^2}+4a-5≤0$,解得-5≤a≤1.
若q为 真,不等式x2+2x+a<0有解,△2=4-4a>0,解得a<1.
∵命题p∨q为真,p∧q为假,∴p,q,一真一假.
(1)p真q假,则$\left\{\begin{array}{l}-5≤a≤1\\ a≥1\end{array}\right.$,∴a=1.
(2)若p假q真,则$\left\{\begin{array}{l}a<-5或a>1\\ a<1\end{array}\right.$,∴a<-5,
综上,a的取值范围是{a|a<-5或a=1}.
点评 本题考查了不等式的解集与判别式的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2n}{2n+1}$ | B. | $\frac{n}{2n+1}$ | C. | $\frac{2n}{4n+1}$ | D. | $\frac{n}{4n+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com