精英家教网 > 高中数学 > 题目详情
19.已知集合A={3a,3},B={a2+2a,4},A∩B={3},则A∪B等于(  )
A.{3,5}B.{3,4}C.{-9,3}D.{-9,3,4}

分析 利用交集性质求出a=-3,从而求出集合A和B,由此能求出A∪B.

解答 解:∵集合A={3a,3},B={a2+2a,4},A∩B={3},
∴$\left\{\begin{array}{l}{{a}^{2}+2a=3}\\{3a≠3}\end{array}\right.$,解得a=-3,
∴A={-9,3},B={3,4},
A∪B={-9,3,4}.
故选:D.

点评 本题考查交集、并集的求法,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.方程$\frac{{x}^{2}}{10-m}$+$\frac{{y}^{2}}{m-2}$=1表示焦点在x轴上的椭圆,则m的取值范围为(  )
A.(2,+∞)B.(2,6)∪(6,10)C.(2,10)D.(2,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.全世界越来越关注环境保护问题,某省一监测站点于2016年8月某日起连续x天监测空气质量指数(AQI),数据统计如下:
空气质量指数(μg/m3[0,50)[50,100)[100,150)[150,200)[201,250]
空气质量等级空气优空气良轻度污染中度污染重度污染
天数2040y105
(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x、y的值,并完成频率分布直方图;
(Ⅱ)在空气质量指数分别为[50,100)和[150,200)的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A“两天空气都为良”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,网格纸上正方形的边长为1,图中粗实线画出的是一个几何体的三视图,则这个几何体的表面积是(  )
A.$({1+\frac{{\sqrt{5}}}{2}})•π+2({1+\sqrt{5}})$B.$\frac{{({1+\sqrt{5}})}}{2}•π+2({1+\sqrt{5}})$C.$\frac{{({1+\sqrt{5}})}}{2}•π+2({3+\sqrt{5}})$D.$\frac{{({1+\sqrt{5}})}}{2}•π+4+\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.长沙梅溪湖步步高购物中心在开业之后,为了解消费者购物金额的分布,在当月的电脑消费小票中随机抽取n张进行统计,将结果分成6组,分别是:[0,100),[100,200),[200,300),[300,400),[400,500),[500,600],制成如下所示的频率分布直方图(假设消费金额均在[0,600]元的区间内).
(1)若在消费金额为[400,600]元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票均来自[400,500)元区间的概率;
(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案.
方案一:全场商品打八折.
方案二:全场购物满100元减20元,满300元减80元,满500元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析:哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设等比数列{an}的前n项和为Sn,若a3=2a4=2,则S6=$\frac{63}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|2x-a|+a.
(1)当a=3时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x-3|,?x∈R,f(x)+g(x)≥5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中曲线部分是圆弧,则此几何体的表面积为(  )
A.2+4$\sqrt{2}$+3πB.2+4$\sqrt{2}$+5πC.10+πD.20+2π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx-2ax,a∈R.
(Ⅰ)若函数y=f(x)存在与直线2x-y=0垂直的切线,求实数a的取值范围;
(Ⅱ)设g(x)=f(x)+$\frac{1}{2}{x^2}$,若g(x)有极大值点x1,求证:$\frac{{ln{x_1}}}{x_1}+\frac{1}{{{x_1}^2}}$>a.

查看答案和解析>>

同步练习册答案