精英家教网 > 高中数学 > 题目详情
14.若x,y∈R,且$\left\{\begin{array}{l}{x≥1}\\{y≥x}\\{x-2y+3≥0}\end{array}\right.$,则k=$\frac{y}{x}$的最大值等于(  )
A.3B.$\frac{1}{2}$C.1D.2

分析 由约束条件作出可行域,数形结合得到最优解,联立方程组求出最优解的坐标,由k=$\frac{y}{x}$的几何意义求得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x≥1}\\{y≥x}\\{x-2y+3≥0}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x=1}\\{x-2y+3=0}\end{array}\right.$,解得A(1,2),
∴k=$\frac{y}{x}$的最大值等于2.
故选:D.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.m取何值时,复数z=$\frac{{m}^{2}-m-6}{m+3}$+(m2-2m-15)i(i为虚数单位)
(1)是实数;    
(2)是纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.以下关于命题的说法正确的有①③④(填写所有正确命题的序号)
①命题“若x>y,则x>|y|”的逆命题是真命题;
②命题“若x=1,则x2+x-2=0”的否命题是真命题;
③命题“若x2+y2=0,则x=y=0”的逆否命题为“若x≠0或y≠0,则x2+y2≠0”;
④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若(2x+$\sqrt{3}$)3=a0+a1x+a2x2+a3x3,则(a0+a22-(a1+a32=-1.a0+a1+a2+a3=${(2+\sqrt{3})}^{3}$,a0-a1+a2-a3=${(-2+\sqrt{3})}^{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数 y=3-$\frac{3}{1-x}$(  )
A.在(-1,+∞)内单调递增B.在(-1,+∞)内单调递减
C.在(1,+∞)内单调递增D.在(1,+∞)内单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.给出以下命题,正确命题的序号为①②③.
①(m-1)(a-1)>0是logam>0的必要不充分条件.
②双曲线$\frac{y^2}{2}$-x2=1的渐近线方程为y=±$\sqrt{2}$x;
③已知线性回归方程为$\stackrel{∧}{y}$=3+2x,当变量x增加2个单位,其预报值平均增加4个单位;
④设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=0.2,则P(-1<ξ<0)=0.6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若n∈N且n为奇数,则6n+C${\;}_{n}^{1}$6n-1+C${\;}_{n}^{2}$6n-2+…+C${\;}_{n}^{n-1}$6-1被8除所得的余数是(  )
A.0B.2C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.不等式$\sqrt{a^2-x^2}$<x+a(a>0)的解集是(  )
A.{x|-$\frac{a}{2}$<x<a}B.{x|x>0或x$<-\frac{3}{5}$a}
C.{x|-a≤x≤-$\frac{3}{5}$a或0≤x<a}D.{x|0<x≤a}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}的前n项和为Sn,且S10=${∫}_{0}^{4}$(1+2x)dx,则a5+a6=(  )
A.4B.8C.12D.20

查看答案和解析>>

同步练习册答案