精英家教网 > 高中数学 > 题目详情
已知a>0,x,y满足约束条件
x≥1
x+y≤3
y≥a(x-3)
,若z=2x+y的最小值为
3
2
,则a=(  )
A、
1
4
B、
1
2
C、1
D、2
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.
解答: 解:作出不等式对应的平面区域,(阴影部分)
由z=2x+y,得y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最小,此时z最小.
2x+y=
3
2
x=1
,解得
x=1
y=-
1
2

即A(1,-
1
2
),
∵点A也在直线y=a(x-3)上,
-
1
2
=a(1-3)=-2a

解得a=
1
4

故选:A.
点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足
y≤x
x+2y≤4
y≥-2
,则s=(x+1)2+(y-1)2的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆A过点P(
2
2
)
,且与圆B:(x+2)2+(y-2)2=r2(r>0)关于直线x-y+2=0对称.
(1)求圆A的方程;
(2)若HE、HF是圆A的两条切线,E、F是切点,求
HE
HF
的最小值.
(3)过平面上一点Q(x0,y0)向圆A和圆B各引一条切线,切点分别为C、D,设
|QD|
|QC|
=2
,求证:平面上存在一定点M使得Q到M的距离为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果f(n)=1+
1
2
+
1
3
+…+
1
n
+
1
n+1
…+
1
2n
(n∈N*),那么f(k+1)-f(k)共有
 
项.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形ABCD中,∠A=90°,∠B=30°,AB=2
3
,BC=2,点E在线段CD上,若
AE
=
AD
AB
,则μ的取值范围是(  )
A、[0,1]
B、[0,
3
]
C、[0,
1
2
]
D、[
1
2
,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
3x-y-2≤0
x-y≥0
x≥0,y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为4,则a+b的值为(  )
A、4
B、2
C、
1
4
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以点C为圆心的圆经过点A(3,1)和B(1,3),且圆自身关于直线2x+y-3=0对称.设直线l:y=x+m.
(1)求圆C的方程;
(2)设点Q在圆C上,若到直线l:y=x+m的距离等于1的点Q恰有4个,求m的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-3,3]上随机取一个数x,使得函数f(x)=
1-x
+
x+3
-1有意义的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

|x+2|-|x-1|<a的解集为非空集合,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案