精英家教网 > 高中数学 > 题目详情
(2009•黄冈模拟)设函数fn(x)=1+x-
x2
2
+
x3
3
-…+
x2n-1
2n-1
,n∈N*
(1)讨论函数f2(x)的单调性;
(2)判断方程fn(x)=0的实数解的个数,并加以证明.
分析:(1)写出要用的函数,对于函数求导,导函数是一个二次函数,配方整理看出导函数一定小于0,得到函数的单调性.
(2)首先验证当n=1时,只有一个解,在验证n大于等于2时的情况,求出导数,根据导数的正负看出函数的单调性,看出交点的个数.
解答:解:(1)f2(x)=1+x-
1
2
x2+
1
3
x3,f2′(x)=-1-x+x2=(x-
1
2
2+
3
4
>0,
所以f2(x)在R单调递增.
(2)f1(x)=1+x有唯一实数解x=-1
由fn(x)=1+x-
x2
2
+
x3
3
+…+
x2n-1
2n-1
,n∈N*
得fn′(x)=1-x+x2-…-x2n-3+x2n-2
(1)若x=-1,则fn′(x)=(2n-1)>0.
(2)若x=0,则fn′(x)=1>0.
(3)若x≠-1,且x≠0时,则fn′(x)=
x2n-1+1
x+1

①当x<-1时,x+1<0,x2n-1+1<0,fn′(x)>0.
②当x>-1时,fn′(x)>0
综合(1),(2),(3),得fn′(x)>0,
即fn(x)在R单调递增.          (10分)
又fn(0)=1>0,fn(-1)=1+(-1)-
1
2
+
1
3
-…-
1
2n-2
+
1
2n-1
<0,
所以fn(x)在(-1,0)有唯一实数解,从而fn(x)在R有唯一实数解.
综上,fn(x)=0有唯一实数解.
点评:本题考查函数与方程的关系和导数的应用,本题解题的关键是可以导数看出函数的单调性,根据单调性确定函数与横轴的交点个数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•黄冈模拟)某地正处于地震带上,预计20年后该地将发生地震.当地决定重新选址建设新城区,同时对旧城区进行拆除.已知旧城区的住房总面积为64am2,每年拆除的数量相同;新城区计划用十年建成,第一年建设住房面积2am2,开始几年每年以100%的增长率建设新住房,然后从第五年开始,每年都比上一年减少2am2
(1)若10年后该地新、旧城区的住房总面积正好比目前翻一番,则每年旧城区拆除的住房面积是多少m2
(2)设第n(1≤n≤10且n∈N)年新城区的住房总面积为Snm2,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)如图是一几何体的平面展开图,其中ABCD为正方形,E、F分别为PA、PD的中点.在此几何体中,给出下面四个结论:
①直线BE与直线CF异面;
②直线BE与直线AF异面;
③直线EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正确的命题的个数是
2
2
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)定义在R上的偶函数y=f(x)满足:
①对x∈R都有f(x+6)=f(x)+f(3)
②f(-5)=-1;
③当x1,x2∈[0,3]且x1≠x2时,都有
f(x1)-f(x2)x1-x2
>0则
(1)f(2009)=
-1
-1

(2)若方程f(x)=0在区间[a,6-a]上恰有3个不同实根,实数a的取值范围是
(-9,-3]
(-9,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)已知函数f(x)=
1-x2
1+x+x2
(x∈R)

(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若(et+2)x2+etx+et-2≥0对满足|x|≤1的任意实数x恒成立,求实数t的取值范围(这里e是自然对数的底数);
(Ⅲ)求证:对任意正数a、b、λ、μ,恒有f[(
λa+μb
λ+μ
)
2
]-f(
λa2b2
λ+μ
)≥(
λa+μb
λ+μ
)2
-
λa2b2
λ+μ

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为x,y,记ξ=x+y.
(1)求随机变量ξ的分布列及数学期望;
(2)设“函数f(x)=x2-ξx-1在区间(2,3)上有且只有一个零点”为事件A,求事件A发生的概率.

查看答案和解析>>

同步练习册答案