精英家教网 > 高中数学 > 题目详情

已知,若,使得f(x1)≥g(x2),则实数m的取值范围是

[  ]
A.

[,+∞)

B.

(-∞,]

C.

[,+∞)

D.

(-∞,-]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湛江二模)已知a<2,f(x)=x-alnx-
a-1
x
,g(x)=
1
2
x2+ex-xex
.(注:e是自然对数的底)
(1)求f(x)的单调区间;
(2)若存在x1∈[e,e2],使得对任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
12
ax2-lnx

(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)讨论f(x)的单调性;
(3)是否存在a的值,使得方程f(x)=2有两个不等的实数根?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省盐城市高三上学期期中考数学试卷(解析版) 题型:解答题

已知函数

(Ⅰ)判断f(x)在上的单调性,并证明你的结论;

(Ⅱ)若集合A={y | y=f(x),},B=[0,1], 试判断A与B的关系;

(Ⅲ)若存在实数a、b(a<b),使得集合{y | y=f(x),a≤x≤b}=[ma,mb],求非零实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a<2,f(x)=x-alnx-
a-1
x
,g(x)=
1
2
x2+ex-xex
.(注:e是自然对数的底)
(1)求f(x)的单调区间;
(2)若存在x1∈[e,e2],使得对任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=f(x)= (p∈Z)在(0,+∞)上是增函数,且是偶函数.

(1)求p的值并写出相应的函数f(x);

(2)对于(1)中求得的函数f(x),设函数g(x)=-qf(f(x))+(2q-1)f(x)+1.

试问:是否存在实数q(q<0),使得g(x)在区间(-∞,-4]上是减函数,且在(-4,0)上是增函数;若存在,请求出来,若不存在,说明理由.

查看答案和解析>>

同步练习册答案