【题目】已知抛物线的方程为抛物线上一点,为抛物线的焦点.
(I)求;
(II)设直线与抛物线有唯一公共点,且与直线相交于点,试问,在坐标平面内是否存在点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,说明理由.
【答案】(I);(II)存在,.
【解析】
试题分析:(I)借助题设条件运用抛物线的定义求解;(II)借助题设运用直线与抛物线的位置关系及向量的数量积探求.
试题解析:
(I)由题可知,即,由抛物线的定义可知............4分
(II)法1:由关于轴对称可知,若存在点,使得以为直径的圆恒过点,则点必在轴上,设,又设点,由直线与曲线有唯一公共点知,直线与相切由得.
,直线的方程为,
令得,点坐标为,,
点在以为直径的圆上,
要使方程恒成立,必须有,解得.
在坐标平面内存在点,使得以为直径的圆恒过点,其坐标为..................12分
法2:设点,由与曲线有唯一公共点知,直线与相切,
由得.直线的方程为,
令得,点坐标为,
以为直径的圆的方程为: ①
分别令和,由点在曲线上得,
将的值分别代入①得: ②
③
②③联立得或.
在坐标平面内若存在点,使得以为直径的圆恒过点,则点必为或,将的坐标代入①式得,
左边==右边,
将的坐标代入①式得,左边=不恒等于0,
在坐标平面内若存在点,使得以为直径的圆恒过点,则点的坐标为.........12分
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)若函数在处取得极值,求实数的值;
(Ⅱ)在(Ⅰ)的条件下,函数 (其中为函数的导数)的图像关于直线对称,求函数单调区间;
(Ⅲ)在(Ⅱ)的条件下,若对任意的,都有恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列正确命题有__________.
①“”是“”的充分不必要条件
②如果命题“”为假命题,则中至多有一个为真命题
③设,若,则的最小值为
④函数在上存在,使,则a的取值范围或.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列,,其前项和满足,其中.
(1)设,证明:数列是等差数列;
(2)设,为数列的前项和,求证:;
(3)设(为非零整数,),试确定的值,使得对任意,都有成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数相邻两对称轴间的距离为,若将的图像先向左平移个单位,再向下平移1个单位,所得的函数为奇函数.
(1)求的解析式,并求的对称中心;
(2)若关于的方程在区间上有两个不相等的实根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了了解这次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表和频率分布直方图,回答下面问题:
(1)结合图表信息,补全频率分布直方图;
(2)对于参加这次竞赛的900名学生,估计成绩不低于76分的约有多少人.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究某种微生物的生长规律,需要了解环境温度()对该微生物的活性指标的影响,某实验小组设计了一组实验,并得到如表的实验数据:
环境温度() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
活性指标 |
(Ⅰ)由表中数据判断关于的关系较符合还是,并求关于的回归方程(,取整数);
(Ⅱ)根据(Ⅰ)中的结果分析:若要求该种微生物的活性指标不能低于,则环境温度应不得高于多少?
附:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等,我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是( )
8 | 3 | 4 |
1 | 5 | 9 |
6 | 7 | 2 |
A. 9 B. 8 C. 6 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com