(14分)已知函数
.
(Ⅰ)求函数
的最小值;
(Ⅱ)求证:![]()
;
(Ⅲ)对于函数
与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设函数
,
,
与
是否存在“分界线”?若存在,求出
的值;若不存在,请说明理由.
(Ⅰ)
的最小值为
;(Ⅱ)详见解析;(Ⅲ)
,![]()
解析试题分析:(Ⅰ)求导得:
,由此可得函数
在
上递减,
上递增,
从而得
的最小值为
.
(Ⅱ)注意用第(Ⅰ)小题的结果.由(Ⅰ)知
.这个不等式如何用?结合所在证的不等式可以看出,可以两端同时乘以
变形为:
,把
换成
得
,在这个不等式中令
然后将各不等式相乘即得.
(Ⅲ)结合题中定义可知,分界线就是一条把两个函数的图象分开的直线.那么如何确定两个函数是否存在分界线?显然,如果两个函数的图象没有公共点,则它们有无数条分界线,如果两个函数至少有两个公共点,则它们没有分界线.所以接下来我们就研究这两个函数是否有公共点.为此设
.通过求导可得当
时
取得最小值0,这说明
与
的图象在
处有公共点
.如果它们存在分界线,则这条分界线必过该点.所以设
与
的“分界线”方程为
.由于
的最小值为0,所以
,所以分界线必满足
和
.下面就利用这两个不等式来确定
的值.
试题解析:(Ⅰ)解:因为
,令
,解得
,
令
,解得
,
所以函数
在
上递减,
上递增,
所以
的最小值为
. 3分
(Ⅱ)证明:由(Ⅰ)知函数
在
取得最小值,所以
,即![]()
两端同时乘以
得
,把
换成
得
,当且仅当
时等号成立.
由
得,
,
,
,
,
.
将上式相乘得
. 9分
(Ⅲ)设
.
则
.
所以当
时,
;当
时,
.
因此
时
取得最小值0,则
与
的图象在
处有公共点
.
设
与
存在 “分界线”,方程为
.
由
科目:高中数学 来源: 题型:解答题
某种商品原来每件售价为25元,年销售8万件.
(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到
元.公司拟投入
万元作为技改费用,投入50万元作为固定宣传费用,投入
万元作为浮动宣传费用.试问:当该商品明年的销售量
至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度
(单位:辆/千米)的函数.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当
时,车流速度
是车流密度x的一次函数.
(Ⅰ)当
时,求函数
的表达式;
(Ⅱ)当车流密度
为多大时,车流量(单位时间内通过桥上某观察点的车辆数,单位:辆/每小时)
可以达到最大,并求出最大值(精确到1辆/小时).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某企业生产某种商品
吨,此时所需生产费用为(
)万元,当出售这种商品时,每吨价格为
万元,这里
(
为常数,
)
(1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?
(2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com