精英家教网 > 高中数学 > 题目详情

已知
(1)求的最大值
(2)求的最小值。

(1) (2)

解析试题分析:
(1)由,将函数的对称轴与区间联系起来,分类讨论,可求的最大值;
(2)由,分段求出函数的最大值,比较即可得到函数的最小值;
试题解析:
(1)由
对称轴,又
①当时,
②当时,
③当时,
所以
(2)①当时,
②当时,
③当时,
综上所述:
考点:二次函数的性质、二次函数在闭区间上的最值;分段函数最值;分类讨论思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录。为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中,a为正常数);已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为万元/万件.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润是大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一块边长为4米的正方形钢板,现对其进行切割,焊接成一个长方体无盖容器(切、焊损耗忽略不计),有人用数学知识作了如下设计:在钢板的四个角处各切去一个小正方形,剩余部分围成长方体。
(Ⅰ)求这种切割、焊接而成的长方体的最大容积.
(Ⅱ)请问:能重新设计,使所得长方体的容器的容积吗?若能、给出你的一种设计方案。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业生产某种商品吨,此时所需生产费用为()万元,当出售这种商品时,每吨价格为万元,这里为常数,
(1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?
(2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)已知函数
(Ⅰ)求函数的最小值;
(Ⅱ)求证:
(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设函数是否存在“分界线”?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是实数,设为该函数的图象上的两点,且.
⑴指出函数的单调区间;
⑵若函数的图象在点处的切线互相垂直,且,求的最小值;
⑶若函数的图象在点处的切线重合,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

运货卡车以每小时千米的速度匀速行驶130千米(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.
(1)求这次行车总费用关于的表达式;
(2)当为何值时,这次行车的总费用最低,并求出最低费用的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求的解析式;
(2)解关于的方程
(3)设时,对任意总有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

不用计算器求下列各式的值:
(1)
(2).

查看答案和解析>>

同步练习册答案