精英家教网 > 高中数学 > 题目详情
14.已知等差数列{an}中,公差d>0,又a2•a3=15,a1+a4=8.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记数列bn=an•2n,数列{bn}的前n项和记为Sn,求Sn

分析 (I)利用等差数列的通项公式即可得出.
(II)bn=an•2n=(2n-1)•2n.利用“错位相减法”与等比数列的求和公式即可得出.

解答 解:(Ⅰ)由题意得$\left\{\begin{array}{l}{a_2}•{a_3}=15\\{a_2}+{a_3}=8\end{array}\right.$,解方程组得:$\left\{\begin{array}{l}{a_2}=3\\{a_3}=5\end{array}\right.$或$\left\{\begin{array}{l}{a_2}=5\\{a_3}=3\end{array}\right.$,又d>0,∴$\left\{\begin{array}{l}{a_2}=3\\{a_3}=5\end{array}\right.$,
∴d=2,∴an=2n-1.
(Ⅱ)bn=an•2n=(2n-1)•2n
${S_n}=1•{2^1}+3•{2^2}+5•{2^3}+…+(2n-3)•{2^{n-1}}+(2n-1)•{2^n}$,
则$2{S_n}=1•{2^2}+3•{2^3}+5•{2^4}+…+(2n-3)•{2^n}+(2n-1)•{2^{n+1}}$,
两式错位相减得:$-{S_n}=1•{2^1}+2•{2^2}+2•{2^3}+…+2•{2^n}-(2n-1)•{2^{n+1}}$
=$2+\frac{{8(1-{2^{n-1}})}}{1-2}-(2n-1)•{2^{n+1}}$=-6+(3-2n)•2n+1
∴${S_n}=6+(2n-3)•{2^{n+1}}$.

点评 本题考查了等比数列与等差数列的通项公式与求和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知a,b,c满足a>b>c,且ac<0,则下列不等式中恒成立的个数为(  )
 ①$\frac{b}{a}$>$\frac{c}{a}$ ②$\frac{b-a}{c}$>0 ③$\frac{{b}^{2}}{c}$>$\frac{{a}^{2}}{c}$ ④ab>bc ⑤$\frac{a-c}{ac}$<0.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}的前n项和为Sn,且Sn+an=1(n∈N*),数列{bn}满足b1=4,bn+1=3bn-2(n∈N*).
(1)求数列{an}的通项公式;
(2)求证:数列{bn-1}为等比数列,并求数列{bn}的通项公式;
(3)设数列{cn}满足cn=anlog3(b2n-1-1),其前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合M={x|x>1},N={x|x2-3x≤0},求解下列问题:
(1)M∩N;
(2)N∪(∁RM).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,既是偶函数,又在(0,+∞)上是单调减函数的是(  )
A.y=-2|x|B.$y={x^{\frac{1}{2}}}$C.y=ln|x+1|D.y=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义于R上的偶函数f(x)满足对任意的x∈R都有f(x+8)=f(x)+f(4),若当x∈[0,2]时,f(x)=2-x,则f(2017)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆柱M的底面半径为2,高为6;圆锥N的底面直径和母线长相等.若圆柱M和圆锥N的体积相同,则圆锥N的高为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{{x}^{2}}{9}$+y2=1,过左焦点F1倾斜角为$\frac{π}{6}$的直线交椭圆于A、B两点.求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=8x,则f(-$\frac{19}{3}$)=-2.

查看答案和解析>>

同步练习册答案